分析 設(shè)I(a,a),利用$\overrightarrow{OI}$•$\overrightarrow{OA}=\frac{1}{3}$,求出a,即可求出△AOB內(nèi)切圓的標(biāo)準(zhǔn)方程.
解答 解:設(shè)I(a,a),∵$\overrightarrow{OI}$•$\overrightarrow{OA}=\frac{1}{3}$,
∴$\sqrt{2}$a$•1•\frac{\sqrt{2}}{2}$=$\frac{1}{3}$,
∴a=$\frac{1}{3}$,
∴△AOB內(nèi)切圓的標(biāo)準(zhǔn)方程是(x-$\frac{1}{3}$)2+(y-$\frac{1}{3}$)2=$\frac{1}{9}$,
故答案為(x-$\frac{1}{3}$)2+(y-$\frac{1}{3}$)2=$\frac{1}{9}$.
點(diǎn)評(píng) 本題考查圓的方程,考查向量知識(shí)的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4-i | B. | 2-i | C. | 4+i | D. | 2+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n≥5? | B. | n≤5? | C. | n≥4? | D. | n≤4? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com