A. | $[0,\frac{{\sqrt{3}}}{3}]$ | B. | $[0,\sqrt{3}]$ | C. | $[\sqrt{3}-1,\sqrt{3}]$ | D. | $[\frac{{\sqrt{3}-1}}{2},\sqrt{3}]$ |
分析 把曲線方程變形,設(shè)出過點(diǎn)點(diǎn)P(-$\sqrt{3}$,-1)且與半圓x2+y2=1(-1≤x≤1,y≥0)相切的直線的方程,由圓心到直線的距離小于或等于半徑圓的半徑求得答案.
解答 解:由y=$\sqrt{1-{x^2}}$,得x2+y2=1(-1≤x≤1,y≥0),
設(shè)過點(diǎn)P(-$\sqrt{3}$,-1)且與半圓x2+y2=1(-1≤x≤1,y≥0)相切的直線的斜率為k(k>0),
則直線方程為y+1=k(x+$\sqrt{3}$),即kx-y+$\sqrt{3}$k-1=0.
根據(jù)直線和圓有交點(diǎn)、圓心到直線的距離小于或等于半徑可得 $\frac{|\sqrt{3}k-1|}{\sqrt{{k}^{2}+1}}$≤1,
即 3k2-2$\sqrt{3}$k+1≤k2+1,解得0≤k≤$\sqrt{3}$,
過點(diǎn)P(-$\sqrt{3}$,-1)的直線過(1,0)時(shí),k=$\frac{1}{1+\sqrt{3}}$=$\frac{\sqrt{3}-1}{2}$,
∴$\frac{\sqrt{3}-1}{2}$≤k≤$\sqrt{3}$,
故選:D.
點(diǎn)評 本題考查直線與圓位置關(guān)系的應(yīng)用,考查數(shù)學(xué)轉(zhuǎn)化思想方法和數(shù)形結(jié)合的解題思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{5}}{2}$或$\sqrt{5}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{\sqrt{6}}{2}$或$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,3) | B. | (3,4) | C. | (0,1) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com