1.已知任意角α的終邊經(jīng)過點P(-3,m),且cosα=-$\frac{3}{5}$,則sinα=( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.±$\frac{4}{5}$D.±$\frac{3}{5}$

分析 由已知列式求出m值,再由任意角的三角函數(shù)的定義得答案.

解答 解:∵任意角α的終邊經(jīng)過點P(-3,m),
∴P到原點的距離r=$\sqrt{{m}^{2}+9}$,則cosα=$-\frac{3}{\sqrt{{m}^{2}+9}}=-\frac{3}{5}$,得m=±4.
∴sinα=$\frac{m}{\sqrt{{m}^{2}+9}}=±\frac{4}{5}$.
故選:C.

點評 本題考查三角函數(shù)的化簡求值,考查了任意角的三角函數(shù)的定義,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.用“<”或”>”填空:($\frac{1}{3}$)0.8<($\frac{1}{3}$)0.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.為了調查甲、乙兩個網(wǎng)站受歡迎的程度,隨機選取了14天,統(tǒng)計上午8:00-10:00間各自的點擊量,得如下數(shù)據(jù):
甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25;
乙:12,37,21,5,54,42,61,45,19,6,19,36,42,14;
(1)用莖葉圖表示上面的數(shù)據(jù);
(2)甲網(wǎng)站點擊量在[10,40]間的頻率是多少?
(3)從統(tǒng)計的角度考慮,你認為哪個網(wǎng)站更受歡迎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列有關命題的說法正確的是( 。
A.命題“若x=2,則x2=4”的逆命題為真命題
B.命題“p或q”為真,“非p”為假,則q可真可假
C.命題“若log2x2=2,則x=2”的否命題為:“若log2x2=2,則x≠2”
D.命題“?x∈R使得2x<1”的否定是:“?x∈R均有2x>1”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在兩個變量y與x的回歸模型中,分別選擇了4個不同模型,它們的相關指數(shù)R2如下,其中擬和效果最好的模型是( 。
A.模型1的相關指數(shù)R2為0.25B.模型2的相關指數(shù)R2為0.50
C.模型3的相關指數(shù)R2為0.98D.模型4的相關指數(shù)R2為0.80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某人從甲地去乙地共走了500m,途中要過一條寬為x m的河流,他不小心把一件物品丟在途中,若物品掉在河里就找不到,若物品不掉在河里,則能找到,已知該物品能找到的概率為$\frac{4}{5}$,則河寬為(  )
A.80 mB.100 mC.50 mD.40 m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設全集U=R,集合A={x|-1<x<4},B={y|y=x+1,x∈A},則A∩B=(0,4);(∁UA)∩(∁UB)=(-∞,-1]∪[5,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知復數(shù)$z=\frac{1}{1+i}$,則$\overline z•i$在復平面內(nèi)對應的點位于第二象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設x>0,y>0,且x+2y=1,則$\frac{1}{x}$+$\frac{2}{y}$的最小值為9.

查看答案和解析>>

同步練習冊答案