19.如圖,已知四棱臺(tái)ABCD-A1B1C1D1的上、下底面分別是邊長(zhǎng)為3和6的正方形,AA1=6,且A1A⊥底面ABCD,點(diǎn)P,Q分別在DD1,BC上,且$\overrightarrow{DP}$=$\frac{2}{3}$$\overrightarrow{D{D}_{1}}$,BQ=4.
(1)證明:PQ∥平面ABB1A1;
(2)求二面角P-QD-A的余弦值.

分析 (1)在AA1上取一點(diǎn)N,使得AN=$\frac{2}{3}$AA1,由已知可證四邊形BQPN為平行四邊形,從而證明PQ∥BN,即可判定PQ∥ABB1A1
(2)以A為原點(diǎn),AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角P-QD-A的余弦值.

解答 證明:(1)在AA1上取一點(diǎn)N,使得AN=$\frac{2}{3}$AA1
∵DP=$\frac{2}{3}$DD1,且A1D1=3,AD=6,
∴PN$\underset{∥}{=}$$\frac{2}{3}$AD,又BQ$\underset{∥}{=}$$\frac{2}{3}$AD,
∴PN$\underset{∥}{=}$BQ,
∴四邊形BQPN為平行四邊形,
∴PQ∥BN,
∵BN?平面ABB1A1,PQ?ABB1A1
∴PQ∥ABB1A1
解:(2)以A為原點(diǎn),AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標(biāo)系,
D(0,6,0),D1(0,3,6),P(0,44),Q(6,4,0),A(0,0,0),
$\overrightarrow{DP}$=(0,-2,4),$\overrightarrow{DQ}$=(6,-2,0),
設(shè)平面DPQ的法向量$\overrightarrow{n}$=(x,y,z)
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DP}=-2x+4z=0}\\{\overrightarrow{n}•\overrightarrow{DQ}=6x-2y=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,6,1),
平面ADQ的法向量$\overrightarrow{m}$=(0,0,1),
設(shè)二面角P-QD-A的平面角為θ,
cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{41}}$=$\frac{\sqrt{41}}{41}$.
∴二面角P-QD-A的余弦值為.

點(diǎn)評(píng) 本題考查線面平行的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知兩直線y=ax+2和y=(a+2)x+1互相垂直,則a等于( 。
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個(gè)幾何體的三視圖如圖所示,其中正視圖與俯視圖均是半徑為1的圓,則這個(gè)幾何體的表面積是(  )
A.πB.$\frac{4}{3}π$C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,三棱柱ABC-A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面?zhèn)让鍮B1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(I)求證:平面AA1B1B⊥平面BB1C1C;
(II)若三棱柱ABC-A1B1C1的體積為2$\sqrt{3}$,求點(diǎn)A到平面A1B1C1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,矩形ABCD中,AB=1,BC=2,半圓O以BC為直徑,平面ABCD垂直于半圓O所在的平面,P為半圓周上任意一點(diǎn)(與B、C不重合).
(1)求證:平面PAC⊥平面PAB;
(2)若P為半圓周中點(diǎn),求此時(shí)二面角P-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1,圖中粗線畫出的是某幾何體的三視圖,則幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個(gè)幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖都是斜邊長(zhǎng)為2的直角三角形,俯視圖是半徑為1,圓心角為$\frac{π}{2}$的扇形,則該幾何體的表面積為(  )
A.$\frac{3π}{4}$+$\sqrt{3}$B.$\frac{π}{2}$+$\sqrt{3}$C.$\frac{{\sqrt{3}π}}{12}$D.$\frac{{\sqrt{3}π}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=$\frac{2x}{{x}^{2}+4}$在區(qū)間(a,2a+1)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.(-1,$\frac{1}{2}$]B.[-2,$\frac{1}{2}$]C.[-1,0]D.[-1,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}}$)的圖象經(jīng)過三點(diǎn)(0,$\frac{1}{8}}$),(${\frac{5π}{12}$,0),(${\frac{11π}{12}$,0),且在區(qū)間($\frac{5π}{12}$,$\frac{11π}{12}}$)內(nèi)有唯一的最值,且為最小值.
(1)求出函數(shù)f(x)=Asin(ωx+φ)的解析式;
(2)在△ABC中,a,b,c分別是角A、B、C的對(duì)邊,若f($\frac{A}{2}}$)=$\frac{1}{4}$且bc=1,b+c=3,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案