已知實(shí)數(shù)x,y滿足
x+y-3≥0
x+2y-5≤0
x≥0
y≥0
,則y-2x的最大值是
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答: 解:由約束條件
x+y-3≥0
x+2y-5≤0
x≥0
y≥0
作出可行域如圖,

令z=y-2x,化為y=2x+z,
聯(lián)立
x+2y-5=0
x+y-3=0
,解得C(1,2).
由圖可知,當(dāng)直線過C時(shí),y-2x有最大值為2-2×1=0.
故答案為:0.
點(diǎn)評(píng):本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:(3+a)x-4y=5-3a;l2:2x-(5+a)y=8
(1)a為何值時(shí),l1⊥l2
(2)當(dāng)a=0時(shí),求圓C:x2+y2+4x-12y+39=0關(guān)于直線l1對(duì)稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P為橢圓x2+4y2=16上,則點(diǎn)P到直線y=x-5的最短距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0<x<
3
2
,則函數(shù)y=x(3-2x)的最大值是( 。
A、
9
16
B、
9
4
C、2
D、
9
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)證明函數(shù)y=x+
2
x
在區(qū)間(0,
2
]
為單調(diào)遞減函數(shù);
(2)寫出函數(shù)y=x+
a
x
(a>0)的單調(diào)遞減區(qū)間.(不需要給出證明過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=x2-x+b且f(log2a)=b,log2f(a)=2(a≠1).
(1)求a,b的值;
(2)求f(log2x)的最小值及對(duì)應(yīng)的x的值;
(3)令g(x)=log2f(x),求g(x)在[0,m]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是( 。
A、y=-3x+2
B、y=
3
x
C、y=x2-4x+5
D、y=-3x2+15x-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2+log3x,x∈[1,9]
(1)求y=[f(x)]2+f(x2)的定義域;
(2)求y=[f(x)]2+f(x2)的最大值及當(dāng)y取最大值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x(x-2),則當(dāng)x<0時(shí)f(x)上的表達(dá)式為( 。
A、y=x(x-2)
B、y=x(x+2)
C、y=-x(x-2)
D、y=-x(x+2)

查看答案和解析>>

同步練習(xí)冊(cè)答案