【題目】我們把定義域為且同時滿足以下兩個條件的函數(shù)稱為“函數(shù)”:(1)對任意的,總有;(2)若,,則有成立,下列判斷正確的是( )
A.若為“函數(shù)”,則
B.若為“函數(shù)”,則在上為增函數(shù)
C.函數(shù)在上是“函數(shù)”
D.函數(shù)在上是“函數(shù)”
【答案】ABD
【解析】
利用“函數(shù)”的定義對每一個命題逐一分析,必須同時滿足“函數(shù)”的兩個條件,才是“函數(shù)”,否則就是假命題.
A.因為對任意的,總有,所以,又因為,,則有成立,所以所以,綜合得,所以若為“函數(shù)”,則,是真命題;
B.設(shè)所以,
因為
所以若為“函數(shù)”,則在上為增函數(shù),是真命題;
C.顯然函數(shù)滿足條件(1),如果則所以;如果設(shè)則所以,所以函數(shù)在上是“函數(shù)”是假命題;
D.顯然,所以滿足條件(1),,所以滿足條件(2).所以函數(shù)在上是“函數(shù)”是真命題.
故選:ABD
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下判斷正確的是 ( )
A. 函數(shù)為上的可導(dǎo)函數(shù),則是為函數(shù)極值點的充要條件
B. 若命題為假命題,則命題與命題均為假命題
C. 若,則的逆命題為真命題
D. 在中,“”是“”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從原點向圓 作兩條切線,切點分別為,,記切線,的斜率分別為,.
(Ⅰ)若圓心,求兩切線,的方程;
(Ⅱ)若,求圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=-x2+ax.
(1)若a=-2,求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)為R上的單調(diào)減函數(shù),
①求a的取值范圍;
②若對任意實數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等比數(shù)列,滿足,且成等差數(shù)列.
(1)求的通項公式;
(2)設(shè),數(shù)列的前項和為 , ,求正整數(shù)的值,使得對任意均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】攀枝花是一座資源富集的城市,礦產(chǎn)資源儲量巨大,已發(fā)現(xiàn)礦種76種,探明儲量39種,其中釩、鈦資源儲量分別占全國的63%和93%,占全球的11%和35%,因此其素有“釩鈦之都”的美稱.攀枝花市某科研單位在研發(fā)鈦合金產(chǎn)品的過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標(biāo)值(值越大產(chǎn)品的性能越好)與這種新合金材料的含量(單位:克)的關(guān)系為:當(dāng)時,是的二次函數(shù);當(dāng)時,.測得部分?jǐn)?shù)據(jù)如下表:
(單位:克) | 0 | 2 | 6 | 10 | … |
8 | 8 | … |
(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)求該新合金材料的含量為何值時產(chǎn)品的性能達(dá)到最佳.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點M為棱AB的中點,AB=2,AD=,∠BAD=90°.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)求異面直線BC與MD所成角的余弦值;
(Ⅲ)求直線CD與平面ABD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com