19.已知直線的斜率是6,在y軸上的截距是-4,則此直線方程是( 。
A.6x-y-4=0B.6x-y+4=0C.6x+y+4=0D.6x+y-4=0

分析 利用斜截式即可得出.

解答 解:∵直線的斜率為6,在y軸上的截距是-4,
∴由直線方程的斜截式得直線方程為y=6x-4,即6x-y-4=0.
故選:A.

點(diǎn)評 本題考查了斜截式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題“?x∈R,2x>0”的否定是( 。
A.?x0∈R,2${\;}^{{x}_{0}}$>0B.?x0∈R,2${\;}^{{x}_{0}}$≤0C.?x∈R,2x<0D.?x∈R,2x≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.將函數(shù)y=sin(x-$\frac{π}{6}$)圖象上所有的點(diǎn)( 。梢缘玫胶瘮(shù)y=sin(x+$\frac{π}{6}$)的圖象.
A.向左平移$\frac{π}{3}$單位B.向右平移$\frac{π}{3}$單位C.向左平移$\frac{π}{6}$單位D.向右平移$\frac{π}{6}$單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若復(fù)數(shù)z滿足$\frac{i}{z-1}=\frac{1}{2}$(i為虛數(shù)單位),則z=1+2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若x∈R,則“x>1”是“$\frac{1}{x}<1$”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}x}}$的定義域?yàn)椋?,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.化簡或求值:
(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)0.5+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{25}$
(2)計(jì)算$\frac{lg5•lg8000+{(lg{2}^{\sqrt{3}})}^{2}}{lg600-\frac{1}{2}lg0.036-\frac{1}{2}lg0.1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知tanα=3,則cos2α=$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{{x}^{2}+ax+1,x>0}\end{array}\right.$,F(xiàn)(x)=f(x)-x-1,且函數(shù)F(x)有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.(一∞,0]B.[1,+∞)C.(一∞,1)D.(0,+∞)

查看答案和解析>>

同步練習(xí)冊答案