分析 根據(jù)題意,利用平面向量的基本定理和向量相等的定義,構(gòu)造關(guān)于t的方程組,解方程組即可.
解答 解:∵$\overrightarrow{a}$、$\overrightarrow$是兩個不共線的向量,且起點相同,
又$\overrightarrow{a}$、$\frac{1}{2}$$\overrightarrow$、t($\overrightarrow{a}$+$\overrightarrow$)三向量的終點在一直線上,
∴t($\overrightarrow{a}$+$\overrightarrow$)=λ$\overrightarrow{a}$+μ•$\frac{1}{2}$$\overrightarrow$,
即$\left\{\begin{array}{l}{t=λ}\\{t=\frac{1}{2}μ}\\{λ+μ=1}\end{array}\right.$,
解得t=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.
點評 本題考查了平面向量的基本定理與向量相等的應用問題,是基礎(chǔ)題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{AB}{DE}=\frac{AD}{BE}$ | B. | $\frac{BC}{AC}=\frac{EF}{DF}$ | C. | $\frac{AC}{AB}=\frac{DF}{EF}$ | D. | $\frac{AB}{EF}=\frac{DE}{BC}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=5+\frac{1}{2}t}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=5-\frac{1}{2}t}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5-\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com