(本小題滿分12分)
如圖:四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分別為線段PD和BC的中點.
(Ⅰ) 求證:CE∥平面PAF;
(Ⅱ) 在線段BC上是否存在一點G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請說明理由.
(1)取PA中點為H,連結CE、HE、FH,證出HE∥AD,,
由ABCD是平行四邊形,且F為線段BC的中點 推出FC∥AD,,
從而進一步得出CE∥平面PAF;
(2)線段BC上存在一點G,使得平面PAG和平面PGC所成二面角的大小為60°點G即為B點
【解析】
試題分析:證明(1)取PA中點為H,連結CE、HE、FH,
因為H、E分別為PA、PD的中點,所以HE∥AD,,
因為ABCD是平行四邊形,且F為線段BC的中點 所以FC∥AD,
所以HE∥FC, 四邊形FCEH是平行四邊形 所以EC∥HF
又因為
所以CE∥平面PAF ……………4分
(2)因為四邊形ABCD為平行四邊形且∠ACB=90°,
所以CA⊥AD 又由平面PAD⊥平面ABCD可得
CA⊥平面PAD 所以CA⊥PA
由PA=AD=1,PD=可知,PA⊥AD…………5分
所以可建立如圖所示的平面直角坐標系A-xyz
因為PA=BC=1,AB=所以AC=1 所以
假設BC上存在一點G,使得平面PAG和平面PGC所成二面角的大小為60°,
設點G的坐標為(1,a,0), 所以
設平面PAG的法向量為
則令 所以
又
設平面PCG的法向量為
則令所以 ……………9分
因為平面PAG和平面PGC所成二面角的大小為60°,所以
所以又所以 ……………11分
所以線段BC上存在一點G,使得平面PAG和平面PGC所成二面角的大小為60°點G即為B點……12分
考點:本題主要考查立體幾何中的平行關系、垂直關系,角的計算。
點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟。本題利用向量簡化了證明過程。把證明問題轉化成向量的坐標運算,這種方法帶有方向性。
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產A,B兩種產品,根據(jù)市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com