分析 (I)a2,a4,a8成等比數(shù)列,可得${({a_4})^2}={a_2}•{a_8}$.再利用等差數(shù)列的通項(xiàng)公式即可得出.
(Ⅱ)bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂項(xiàng)求和方法”即可得出.
解答 解:(Ⅰ)設(shè){an}的公差為d,
因?yàn)閍2,a4,a8成等比數(shù)列,所以${({a_4})^2}={a_2}•{a_8}$.
即${({a_1}+3d)^2}=({a_1}+d)•({a_1}+7d)$,即d2=a1d.
又a1=1,且d≠0,解得d=1.
所以有an=a1+(n-1)d=1=(n-1)=n.
(Ⅱ)由(Ⅰ)知:${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
則${S_n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}$.
即${S_n}=1-\frac{1}{n+1}=\frac{n}{n+1}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列與等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $±\frac{7}{9}$ | B. | $±\frac{{4\sqrt{2}}}{7}$ | C. | $±2\sqrt{2}$ | D. | $±\frac{{\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -1 | C. | 1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{2}$+$\frac{1}{2}$i | B. | -$\frac{3}{2}$-$\frac{1}{2}$i | C. | $\frac{3}{2}$-$\frac{1}{2}$i | D. | $\frac{3}{2}$+$\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com