8.某冷飲店為了解氣溫變化對其營業(yè)額的影響,隨機(jī)記錄了該店1月份銷售淡季中5天的日營業(yè)額y(單位:百元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表所示:
x367910
y1210887
(Ⅰ)判定y與x之間是正相關(guān)還是負(fù)相關(guān),并求回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$
(Ⅱ)若該地1月份某天的最低氣溫為6℃,預(yù)測該店當(dāng)日的營業(yè)額
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n(\overline{x}\overline{y})}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$).

分析 (Ⅰ)隨著x的增加,y減小,故y與x的是負(fù)相關(guān),該地當(dāng)日最低氣溫x和日營業(yè)額y的平均數(shù),得到這組數(shù)據(jù)的樣本中心點(diǎn),利用最小二乘法求出線性回歸方程的系數(shù),代入樣本中心點(diǎn)求出a的值,寫出線性回歸方程.
(Ⅱ)將x=6,即可求得該店當(dāng)日的營業(yè)額.

解答 解:(I)由散點(diǎn)圖知:y與x之間是負(fù)相關(guān);…(2分)
因?yàn)閚=5,$\overline{x}$=7,$\overline{y}$=9,$\sum_{i=1}^{5}$(${{x}_{i}}^{2}$-5${\overline{x}}^{2}$)=275-5×72=30;$\sum_{i=1}^{5}$(xiyi-5$\overline{x}\overline{y}$)=294-5×7×9=-21.
所以b=-0.7,…(4分)
$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$=9-(-0.7)×7=13.9.…(6分)
故回歸方程為y=-0.7x+13.9…(8分)
(Ⅱ)當(dāng)x=6時,y=-0.7×6+13.9=9.7.
故預(yù)測該店當(dāng)日的營業(yè)額約為970元…(12分)

點(diǎn)評 本題考查散點(diǎn)圖,考查線性回歸方程的求法,考查利用線性回歸方程進(jìn)行預(yù)測,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在極坐標(biāo)系中,與圓ρ=4sinθ相切的一條直線的方程為( 。
A.ρcosθ=$\frac{1}{2}$B.ρcosθ=2C.ρ=4sin(θ+$\frac{π}{3}$)D.ρ=4sin(θ-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合A={x|y=ln(2x-1)},B={x|-1<x<3},則A∩B=(  )
A.(-1,3)B.(1,3)C.(-1,$\frac{1}{2}$)D.($\frac{1}{2}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,平行四邊形ABCD中,AB=1,AD=4,CE=$\frac{1}{3}$CB.CF=$\frac{2}{3}$CD,∠DAB=60°,求$\overrightarrow{AC}$•$\overrightarrow{FE}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.禽流感是家禽養(yǎng)殖業(yè)的最大威脅,為檢驗(yàn)?zāi)撤N藥物預(yù)防禽流感的效果,取80只家禽進(jìn)行對比試驗(yàn),得到如表丟失數(shù)據(jù)的列聯(lián)表:(表中c,d,M,N表示丟失的數(shù)據(jù))
患病未患病總計
未服用藥251540
服用藥cd40
總計MN80
設(shè)從試驗(yàn)未服用藥的家禽中任取兩只,取到未患病家禽數(shù)為X;從試驗(yàn)中服用藥物的家禽中任取兩只,取到未患病家禽數(shù)為Y,工作人員曾計算過:X=2的概率是Y<1的概率的$\frac{7}{3}$倍.
(1)求出列聯(lián)表中數(shù)據(jù)c,d,M,N的值;
(2)能否在犯錯概率不超過0.005的前提下認(rèn)為該藥物預(yù)防禽流感有效?
(3)求X與Y的期望并比較大小,請解釋所得結(jié)論的實(shí)際意義.
下面的臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖的程序后,輸出的結(jié)果是( 。
A.1,3B.4,1C.0,0D.4,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.[重點(diǎn)中學(xué)做]已知函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{2}$,π)上單調(diào)遞減,則ω的取值范圍是[$\frac{1}{2}$,$\frac{5}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若復(fù)數(shù)z滿足iz=|$\frac{-1+\sqrt{3}i}{1+i}$|+2i(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過點(diǎn)A(2,1)且斜率為1的直線方程是( 。
A.x-y-1=0B.x-y-3=0C.x+y-3=0D.x+y-1=0

查看答案和解析>>

同步練習(xí)冊答案