19.設(shè)集合A={x|y=ln(2x-1)},B={x|-1<x<3},則A∩B=( 。
A.(-1,3)B.(1,3)C.(-1,$\frac{1}{2}$)D.($\frac{1}{2}$,3)

分析 求出A中x的范圍確定出A,找出A與B的交集即可.

解答 解:由A中y=ln(2x-1),得到2x-1>0,
解得:x>$\frac{1}{2}$,即A=($\frac{1}{2}$,+∞),
∵B=(-1,3),
∴A∩B=($\frac{1}{2}$,3),
故選:D.

點評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.長方體ABCD-A1B1C1D1中,AB=4,AA1=3,BC=2,P為A1B1中點,M,N,Q分別為棱AB,AA1,CC1上的點,且AB=4MB,AA1=3AN,CC1=3CQ.
(Ⅰ)求證:PQ⊥平面PD1N;
(Ⅱ)求二面角P-D1M-N的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如果X~B(1,p),則D(X)( 。
A.有最大值$\frac{1}{2}$B.有最大值$\frac{1}{4}$C.有最小值$\frac{1}{2}$D.有最小值$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,點A是橢圓C上任意一點,且△AF1F2的周長為2($\sqrt{2}$+1)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動點B在直線l:y=$\sqrt{2}$上,且OA⊥OB,點O到直線AB的距離為d(A,B),求證:d(A,B)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)從5位男生與3位女生中選派4名代表參加某項活動,要求其中至少有1位女生,一共有多少種選派方案(用數(shù)字作答)
(2)已知($\sqrt{x}$-$\frac{2}{x}$)n的展開式中x的一次項是第3項,求n的值及展開式中二次項系數(shù)最大的項的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,AB是⊙O的直徑,CB切⊙O于點B,CD切⊙O于點D,交BA延長線于點E,若ED=$\sqrt{3}$,∠ADE=30°,則△BDC的外接圓的直徑為( 。
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.由函數(shù)y=sin(5x+$\frac{π}{6}$)的圖象得到y(tǒng)=sinx的圖象,下列操作正確的是(  )
A.將y=sin(5x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{30}$;再將所有點的橫坐標(biāo)伸長為原來的5倍,縱坐標(biāo)不變
B.將y=sin(5x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{30}$;再將所有點的橫坐標(biāo)伸長為原來的5倍,縱坐標(biāo)不變
C.將y=sin(5x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{30}$;再將所有點的橫坐標(biāo)縮短為原來的$\frac{1}{5}$倍,縱坐標(biāo)不變
D.將y=sin(5x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{30}$;再將所有點的橫坐標(biāo)縮短為原來的$\frac{1}{5}$倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某冷飲店為了解氣溫變化對其營業(yè)額的影響,隨機(jī)記錄了該店1月份銷售淡季中5天的日營業(yè)額y(單位:百元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表所示:
x367910
y1210887
(Ⅰ)判定y與x之間是正相關(guān)還是負(fù)相關(guān),并求回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$
(Ⅱ)若該地1月份某天的最低氣溫為6℃,預(yù)測該店當(dāng)日的營業(yè)額
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n(\overline{x}\overline{y})}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一邊長為a的正方形鐵片,鐵片的四角截去四個邊長均為x的小正方形,然后做成一個無蓋的方盒,當(dāng)x等于$\frac{a}{6}$時,方盒的容積最大.

查看答案和解析>>

同步練習(xí)冊答案