A. | $\frac{5}{6}$ | B. | $\frac{25}{12}$ | C. | $\frac{9}{4}$ | D. | 以上都不對 |
分析 利用對數(shù)的換底公式、對數(shù)的運(yùn)算性質(zhì)即可得出.
解答 解:原式=$(\frac{lg3}{2lg2}+\frac{lg3}{3lg2})$$(\frac{lg2}{lg3}+\frac{3lg2}{2lg3})$
=$\frac{lg3}{lg2}•\frac{lg2}{lg3}$$(\frac{1}{2}+\frac{1}{3})(1+\frac{3}{2})$
=$\frac{25}{12}$.
故選:B.
點(diǎn)評 本題考查了對數(shù)的換底公式、對數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 根據(jù)古典概型概率計(jì)算公式P(A)=$\frac{{n}_{A}}{n}$求出的值是事件A發(fā)生的概率的精確值 | |
B. | 根據(jù)幾何概型概率計(jì)算公式P(A)=$\frac{{μ}_{A}}{{μ}_{Ω}}$求出的值是事件A發(fā)生的概率的精確值 | |
C. | 根據(jù)古典概型試驗(yàn),用計(jì)算機(jī)或計(jì)算器產(chǎn)生隨機(jī)整數(shù)統(tǒng)計(jì)試驗(yàn)次數(shù)N和事件A發(fā)生的次數(shù)N1,得到的值$\frac{{N}_{1}}{N}$是P(A)的近似值 | |
D. | 根據(jù)幾何概型試驗(yàn),用計(jì)算機(jī)或計(jì)算器產(chǎn)生均勻隨機(jī)數(shù)統(tǒng)計(jì)試驗(yàn)次數(shù)N和事件A發(fā)生次數(shù)N1,得到的值$\frac{{N}_{1}}{N}$是P(A)的精確值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 44 kg | B. | 46 kg | C. | 50 kg | D. | 54 kg |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{2}$ | C. | ±$\frac{\sqrt{2}}{2}$ | D. | 2或$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com