8.如圖是拋物線形拱橋,當(dāng)水面在l時,拱頂離水面4米,水面寬8米.水位上升1米后,水面寬為(  )
A.$\sqrt{3}$米B.$2\sqrt{3}$米C.$3\sqrt{3}$米D.$4\sqrt{3}$米

分析 先建立直角坐標(biāo)系,將A點(diǎn)代入拋物線方程求得m,得到拋物線方程,再把y=1代入拋物線方程求得x0進(jìn)而得到答案.

解答 解:建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點(diǎn)O且通過C點(diǎn),則通過畫圖可得知O為原點(diǎn),

拋物線以y軸為對稱軸,且經(jīng)過A,B兩點(diǎn),OA和OB可求出為AB的一半4米,拋物線頂點(diǎn)C坐標(biāo)為(0,4),
通過以上條件可設(shè)頂點(diǎn)式y(tǒng)=ax2+4,其中a可通過代入A點(diǎn)坐標(biāo)(-4,0),
到拋物線解析式得出:a=-$\frac{1}{4}$,所以拋物線解析式為y=-$\frac{1}{4}$x2+4,
當(dāng)水面上升1米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:
當(dāng)y=1時,對應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線y=1與拋物線相交的兩點(diǎn)之間的距離,
可以通過把y=1代入拋物線解析式得出:
1=-$\frac{1}{4}$x2+4,
解得:x=±2$\sqrt{3}$,
所以水面寬度增加到4$\sqrt{3}$米,
故選:D.

點(diǎn)評 本題主要考查拋物線的應(yīng)用.考查了學(xué)生利用拋物線解決實(shí)際問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-4x-12)的單調(diào)遞減區(qū)間是(6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知菱形ABCD的邊長為a,∠ABC=60°,則$\overrightarrow{BD}$•$\overrightarrow{CD}$=$\frac{3}{2}{a}^{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.直角坐標(biāo)方程與極坐標(biāo)方程互化;
(1)將x2-y2=a2化為極坐標(biāo)方程;
(2)將ρ=2asinθ化為直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).
(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求二面角B-DE-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下面的程序框圖的作用是輸出兩數(shù)中的較大者,則①②處分別為( 。
A.輸出m;交換m和n的值B.交換m和n的值;輸出m
C.輸出n;交換m和n的值D.交換m和n的值;輸出n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}}$(θ為參數(shù)),P是曲線C上的動點(diǎn),Q(4,0)為x軸的定點(diǎn),M是PQ的中點(diǎn).
(1)求點(diǎn)M的軌跡的參數(shù)方程,并把它轉(zhuǎn)化為普通方程;
(2)設(shè)x=2+$\sqrt{t}$,t為參數(shù),求其對應(yīng)的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面為直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,M、N分別為PC、PB的中點(diǎn).PA=AB.
(1)求證:MN∥平面PAD;
(2)求證:PB⊥DM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知不等式$\frac{a}{x-2}$>1-a
(1)若a=x,求關(guān)于x不等式的解集;   
(2)若a≠1,求關(guān)于x不等式的解集.

查看答案和解析>>

同步練習(xí)冊答案