分析 (1)欲證MN∥平面PAD,根據(jù)線面平行的判定定理知,只須證明MN∥AD,結(jié)合中點條件即可證明得;
(2)欲證PB⊥DM,根據(jù)線面垂直的性質(zhì)定理,只須證明PB⊥平面ADMN,也就是要證明AN⊥PB及AD⊥PA,而這此垂直關(guān)系的證明較為明顯,從而即可證得結(jié)論.
解答 證明:(1)因為M、N分別為PC、PB的中點,
所以MN∥BC,且MN=$\frac{1}{2}$BC.(1分)
又因為AD∥BC,所以MN∥AD.(2分)
又AD⊥平面PAD,MN?平面PAD,所以MN∥平面PAD.(4分)
(2)因為AN為等腰DABP底邊PB上的中線,所以AN⊥PB.(5分)
因為PA⊥平面ABCD,AD?平面ABCD,所以AD⊥PA.
又因為AD⊥AB,且AB∩AP=A,所以AD⊥平面PAB.
又PB?平面PAB,所以AD⊥PB.(6分)
因為AN⊥PB,AD⊥PB,且AN∩AD=A,所以PB⊥平面ADMN.(7分)
又DM?平面ADMN,所以PB⊥DM.(8分)
點評 本小題主要考查直線與平面平行的判定、直線與平面垂直的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,考查空間想象力.屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
A. | 有99%以上的把握認為“需要志愿者提供幫助與性別無關(guān)” | |
B. | 有99%以上的把握認為“需要志愿者提供幫助與性別有關(guān)” | |
C. | 在犯錯誤的概率不超過0.1%的前提下,認為“需要志愿者提供幫助與性別有關(guān)” | |
D. | 在犯錯誤的概率不超過0.1%的前提下,認為“需要志愿者提供幫助與性別無關(guān)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$米 | B. | $2\sqrt{3}$米 | C. | $3\sqrt{3}$米 | D. | $4\sqrt{3}$米 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com