已知函數(shù)f(x)=
log4x ,x>0
3x ,   x≤0
,則f[f(
1
4
)]=
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的表達(dá)式,直接代入進行求解即可.
解答: 解:由分段函數(shù)可知,f(
1
4
)=log
 
1
4
4
=-1

f(-1)=3-1=
1
3
,
故答案為:
1
3
點評:本題主要考查函數(shù)值的計算,利用分段函數(shù)的表達(dá)式直接代入即可,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為
2
2
,P是橢圓上一點,且△PF1F2面積的最大值等于2.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M(0,2)作直線l與直線MF2垂直,試判斷直線l與橢圓的位置關(guān)系.
(Ⅲ)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
經(jīng)過如下五個點中的三個點:P1(-1,-
2
2
)
,P2(0,1),P3(
1
2
,
2
2
)
P4(1,
2
2
)
,P5(1,1).
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)點A為橢圓M的左頂點,B,C為橢圓M上不同于點A的兩點,若原點在△ABC的外部,且△ABC為直角三角形,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:①函數(shù)f(x)=sinx+
2
sinx
(x∈(0,π))
的最小值是2
2
;
②在△ABC中,若sin2A=sin2B,則△ABC是等腰或直角三角形;
③如果正實數(shù)a,b,c滿足a+b>c,則
a
1+a
+
b
1+b
c
1+c
;
④如果y=f(x)是可導(dǎo)函數(shù),則f′(x0)=0是函數(shù)y=f(x)在x=x0處取到極值的必要不充分條件.
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)常數(shù)a∈R,若(x2+
a
x
)5
的二項展開式中x4項的系數(shù)為20,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點與原點重合,始邊與x軸的正半軸重合,終邊上一點的坐標(biāo)為(3,4),則cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:
①函數(shù)f(x)在=
1
lgx
(0,+∞)上是減函數(shù)
②函數(shù)f(x)的圖象連續(xù)不斷,且定義域為R,若x=x0為極值點,則f′(x0)=0
③函數(shù)f(x)=2sinxcosx的最小正周期為π
④已知
a
=(1,
3
),
b
=(0,-1),則
a
b
的夾角為
5
6
π

其中,正確命題的序號是
 
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P是函數(shù)y=-
4-(x-1)2
圖象上的任意一點,點Q(2a,a-3)(a∈R),則|PQ|的最小值為( 。
A、
8
5
5
-2
B、
5
C、
5
-2
D、
7
5
5
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦點分別為F1,F(xiàn)2,上頂點A,△AF1F2為正三角形,以線段F1F2為直徑的圓與直線y═
3
x-4相切.

(1)求橢圓C的方程和離心率.

(2)若點P為焦點F1關(guān)于直線x=-
5
2
的對稱點,動點M滿足
|MF1|
|MF2|
=e,問是否存在一定點T,使得動點M到定點T的距離為定值?若存在,求出定點T的坐標(biāo)及此定值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案