在△ABC中,角A、B、C所對邊分別是a、b、c,且cosA=
1
3

(Ⅰ)求cos(B+C)+cos2A的值:
(Ⅱ)若a=2
2
,b+c=4,求△ABC的面積.
考點:余弦定理,兩角和與差的余弦函數(shù)
專題:解三角形
分析:(Ⅰ)原式利用誘導公式及二倍角的余弦函數(shù)公式化簡,將cosA的值代入計算即可求出值;
(Ⅱ)利用余弦定理列出關系式,將a,cosA的值代入,利用完全平方公式變形,求出bc的值,即可確定出三角形面積.
解答: 解:(Ⅰ)∵cosA=
1
3
,
∴cos(B+C)+cos2A=-cosA+2cos2A-1=-
1
3
-
7
9
=-
10
9
;
(Ⅱ)∵a=2
2
,cosA=
1
3
,即sinA=
1-cos2A
=
2
2
3
,
∴由余弦定理得:a2=b2+c2-2bccosA,即8=b2+c2-
2
3
bc=(b+c)2-
8
3
bc=16-
8
3
bc,
整理得:bc=3,
則S△ABC=
1
2
bcsinA=
1
2
×3×
2
2
3
=
2
點評:此題考查了余弦定理,三角形面積公式,以及二倍角的余弦函數(shù)公式,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖的程序的輸出結果為( 。
A、1,1B、2,0
C、2,1D、1,-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,an+1=2an+1,且a1=1.
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)求數(shù)列{n•(an+1)}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求經(jīng)過點A(-3,0),且與圓C:(x-3)2+y2=64內(nèi)切的圓的圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)對某市工薪階層關于“樓市限購令”的態(tài)度進行調查,隨機抽調了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如表.
月收入(單位百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)4812521
(1)由如表統(tǒng)計數(shù)據(jù)求所示2乘2列聯(lián)表中的a,b,c,d的值,并問是否有99%的把握認為“月收入以5500為分界點對“樓市限購令”的態(tài)度有差異;
月收入低于55百元的人數(shù)月收入不低于55百元的人數(shù)合計
贊成a      b
不贊成       c      d
合計 50
(2)若對在[15,25),[25,35)的被調查中各隨機選取一人進行追蹤調查,記選中的2人中不贊成“樓市限購令”人數(shù)為ξ,求隨機變量ξ的分布列.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k)0.15    0.10    0.0   0.025   0.01
k2.072    2.706    3.841  5.024  6.635 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-
4
x
+clnx,其中c∈R,
(1)當c=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)討論f(x)的單調性;
(3)若f(x)有兩個極值點x1和x2,記過點A(x1,f(x1))、B(x2,f(x2))的直線的斜率為k,問是否存在c,使得k=2+c?若存在,求出c的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C以雙曲線
x2
36
-
y2
64
=1的焦點F1、F2為頂點,頂點為焦點.
(1)求橢圓的標準方程;
(2)若橢圓上存在一點P滿足∠F1PF2=60°,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x>0,y>0,且x+y=1,求證(1+
1
x
)(1+
1
y
)≥9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線的頂點為O(0,0),焦點在x軸上,且過點(2,4),
(1)求拋物線的標準方程;
(2)與圓(x+2)2+y2=4相切的直線l:x=ky+t交拋物線于不同的兩點M,N.若拋物線上一點C滿足
OC
=λ(
OM
+
ON
)(λ>0),求λ的取值范圍.

查看答案和解析>>

同步練習冊答案