12.已知函數(shù)f(x)=x+$\frac{m}{x}$,且函數(shù)y=f(x)的圖象經(jīng)過點(1,2).
(1)求m的值;
(2)判斷函數(shù)的奇偶性并加以證明;
(3)證明:函數(shù)f(x)在(1,+∞)上是增函數(shù).

分析 (1)由函數(shù)f(x)圖象過點(1,2),代入解析式求出m的值;
(2)利用奇偶性的定義判斷f(x)為定義域上的奇函數(shù);
(3)利用單調(diào)性的定義可證明f(x)在(1,+∞)上為增函數(shù).

解答 解:(1)由函數(shù)f(x)=x+$\frac{m}{x}$的圖象過點(1,2),
得2=1+$\frac{m}{1}$,
解得m=1;…(3分)
(2)由(1)知,f(x)=x+$\frac{1}{x}$,
定義域為(-∞,0)∪(0,+∞)具有對稱性,
且f(-x)=-x+$\frac{1}{-x}$=-(x+$\frac{1}{x}$)=-f(x),
所以f(x)為奇函數(shù);…(3分)
(3)證明:設(shè)1<x1<x2,則
f(x1)-f(x2)=$({x_1}+\frac{1}{x_1})-({x_2}+\frac{1}{x_2})$=$\frac{{({x_1}-{x_2})({x_1}x{\;}_2-1)}}{{{x_1}{x_2}}}$,
∵x1-x2<0,x1x2-1>0,x1x2>0,
∴f(x1)<f(x2),
∴函數(shù)y=f(x)在(1,+∞)上為增函數(shù)…(4分)

點評 本題考查了函數(shù)的奇偶性與單調(diào)性的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知直線l1:2x+(m+1)y+4=0與直線l2:mx+3y-2=0平行,求m的值;
(2)已知直線l1:(a+2)x+(1-a)y-1=0與直線l2:(a-1)x+(2a+3)y+2=0互相垂直,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)f(x)是定義在R上的增函數(shù),且對任意x,都有f(-x)+f(x)=0恒成立,如果實數(shù)x,y滿足不等式f(x2-6x)+f(y2-4y+12)≤0,那么$\frac{y-2}{x}$的最大值是( 。
A.1B.2C.$2\sqrt{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=ax-1+1的圖象恒過點(1,2);若對數(shù)函數(shù)g(x)=logbx的圖象經(jīng)過點(3,4),則b=$\root{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cosB=$\frac{2\sqrt{5}}{5}$,tanC=$\frac{1}{3}$.
(Ⅰ)求tanB和tanA;    
(Ⅱ)若c=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=log2(x2-2x-3),則使f(x)為減函數(shù)的區(qū)間是( 。
A.(3,6)B.(-1,0)C.(1,2)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.“方程$\frac{x^2}{2-n}$+$\frac{y^2}{n+1}$=1表示焦點在x軸的橢圓”是“-1<n<2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知二次函數(shù)f(x)=mx2+(m+2)mx+2為偶函數(shù),求實數(shù)m的值=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ax3+bx2+cx+d(a<$\frac{2}{3}$b),在R上是單調(diào)遞增函數(shù),則$\frac{3a+2b+c}{2b-3a}$的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案