A. | 0<a<$\frac{16}{3}$ | B. | a<$\frac{16}{3}$ | C. | a<0或a>$\frac{16}{3}$ | D. | a≤$\frac{16}{3}$ |
分析 根據(jù)函數(shù)的單調(diào)性畫(huà)出函數(shù)的圖象,及題意其定義域R上有3個(gè)零點(diǎn),函數(shù)f(x)在(-1,0)內(nèi)有一個(gè)零點(diǎn),在區(qū)間(0,+∞)上必須有2個(gè)零點(diǎn),
即可求出a的取值范圍.
解答 解:①當(dāng)x≤0時(shí),f(x)=x+3x.
∵函數(shù)y=x與y=3x在x≤0時(shí)都單調(diào)遞增,
∴函數(shù)f(x)=x+3x在區(qū)間(-∞,0]上也單調(diào)遞增,又f(-1)=-$\frac{2}{3}<0$,f(0)=1>0,
所以函數(shù)f(x)在(-1,0)內(nèi)有一個(gè)零點(diǎn),如圖所示.
②當(dāng)x>0時(shí),f(x)=$\frac{1}{3}{x}^{3}-4x+a..(x>0)$,∴f′(x)=x2-4=(x+2)(x-2).
令f′(x)=0,且x>0,解得x=2.
當(dāng)0<x<2時(shí),f′(x)<0;當(dāng)x>2時(shí),f′(x)>0.
∴函數(shù)f(x)在區(qū)間(0,2)上單調(diào)遞減;在區(qū)間(2,+∞)上單調(diào)遞增.
∴函數(shù)f(x)在x=2時(shí)求得極小值,也即在x>0時(shí)的最小值.
∵函數(shù)f(x)在其定義域R上有3個(gè)零點(diǎn),且由(1)可知在區(qū)間(-1,0)內(nèi)已經(jīng)有一個(gè)零點(diǎn)了,所以在區(qū)間(0,+∞)上必須有2個(gè)零點(diǎn),
當(dāng)a≤0時(shí),函數(shù)f(x)在(0,+∞)上只有1個(gè)零點(diǎn),
∴必須滿(mǎn)足a>0且f(2)<0,解得0<a$<\frac{16}{3}$
故選:A.
點(diǎn)評(píng) 本題考查函數(shù)零點(diǎn)判定定理,考查了數(shù)形結(jié)合的解題思想方法,是中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=-2x+1 | B. | f(x)=-x2 | C. | f(x)=-$\frac{1}{x}$ | D. | f(x)=($\frac{1}{2}$)x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4π | B. | 6π | C. | 8π | D. | 10π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com