考點(diǎn):數(shù)列的求和,等差關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(1)令n=3、2依次代入a
n=2a
n-1+2
n+1,求出a
2、a
1,再由b
n=
(a
n+t)求出b
1、b
2、b
3,根據(jù)等差中項(xiàng)求出t的值,再求出公差和等差數(shù)列{b
n}的通項(xiàng)公式;
(2)由(1)和b
n=
(a
n+t)求出a
n,利用分組求和和錯(cuò)位相減法求出數(shù)列{a
n}的前n項(xiàng)和S
n.
解答:
解:(1)由a
n=2a
n-1+2
n+1,a
3=27得,27=2a
2+2
3+1,解得a
2=9,
同理得,9=2a
1+2
2+1,解得a
1=2,
∵b
n=
(a
n+t),∴b
1=
(a
1+t)=
(2+t),
b
2=
(a
2+t)=
(9+t),b
3=
(a
3+t)=
(27+t),
∵數(shù)列{b
n}為等差數(shù)列,∴2b
2=b
1+b
3.
即
(9+t)=(2+t)+(27+t),解得t=1,
則
b1=,
b2=,即公差是1,
∴
bn=+n-1=n+;
(2)由(1)得,
bn=n+=
(a
n+1),
解得
an=(n+)•2n-1=(2n+1)•2
n-1-1,
∴S
n=(3•2
0-1)+(5•2-1)+(7•2
2-1)+…[+(2n+1)•2
n-1-1]
則S
n=3+5•2+7•2
2+…+(2n+1)•2
n-1-n ①,
2S
n=3•2+5•2
2+7•2
3+…+(2n+1)•2
n-2n ②,
①-②得,-S
n=3+2(2+2
2+2
3+…+2
n-1)-(2n+1)2
n+n
=
3+2×-(2n+1)2n+n=(1-2n)•2
n+n-1,
則S
n=(2n-1)•2
n-n+1.
點(diǎn)評(píng):本題考查了遞推公式的意義,等差數(shù)列的通項(xiàng)公式、等比數(shù)列的前n項(xiàng)和公式、分組求和法、錯(cuò)位相減法等,考查分析問(wèn)題和解決問(wèn)題的能力.