分析 由題意已知式子為關(guān)于2x+y的二次函數(shù),然后利用換元法由二次函數(shù)求最值可得.
解答 解:∵x,y為正實數(shù)且4x2+y2+xy=2,
∴(2x+y)2=4x2+y2+4xy=2+3xy,
∴xy=$\frac{(2x+y)^{2}-2}{3}$,
∴2x+y-xy=(2x+y)-$\frac{(2x+y)^{2}-2}{3}$,
令2x+y=t,則上式=t-$\frac{{t}^{2}}{3}$+$\frac{2}{3}$=-$\frac{1}{3}$(t-$\frac{3}{2}$)2+$\frac{17}{12}$≤$\frac{17}{12}$,
當(dāng)且僅當(dāng)2x+y=t=$\frac{3}{2}$時,2x+y-xy取最大值$\frac{17}{12}$
故答案為:$\frac{17}{12}$
點評 本題考查函數(shù)的最值,把已知式子化為關(guān)于2x+y的二次函數(shù)并換元后由二次函數(shù)求最值是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=2n-4 | B. | an=2n-3 | C. | an=2n-1 | D. | an=2n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com