對函數(shù)f(x),若?a,b,c∈R,f(a),f(b),f(c)為一三角形的三邊長,則稱f(x)為“三角型函數(shù)”,已知函數(shù)f(x)=
2x+m
2x+2
(m>0)是“三角型函數(shù)”,則實數(shù)m的取值范圍是( 。
A、[1,4]
B、[0,2]
C、[2,4]
D、[1,2]
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得則f(a)+f(b)>f(c)對任意的a、b、c∈R恒成立,將f(x)解析式用分離常數(shù)法變形,根據(jù)函數(shù)的單調(diào)性求出函數(shù)的值域,然后討論m轉(zhuǎn)化為f(a)+f(b)的最小值與f(c)的最大值的不等式,進而求出實數(shù)m的取值范圍.
解答: 解:由題意可得,f(a)+f(b)>f(c)對任意的a、b、c∈R恒成立,
∵函數(shù)f(x)=
2x+m
2x+2
(m>0)
=
2x+2+m-2
2x+2

=1+
m-2
2x+2
,
∴當(dāng)m≥2時,函數(shù)f(x)在R上是減函數(shù),函數(shù)的值域為(1,
m
2
);
故f(a)+f(b)>2,f(c)<
m
2
,∴m≤4 ①.
當(dāng)m<2時,函數(shù)f(x)在R上是增函數(shù),函數(shù)的值域為(
m
2
,1);
故f(a)+f(b)>m,f(c)<1,
∴m≥1,②.
由①②可得1≤m≤4,
故選:A.
點評:本題主要考查了求參數(shù)的取值范圍,以及構(gòu)成三角形的條件和利用函數(shù)的單調(diào)性求函數(shù)的值域,同時考查了分類討論的思想,屬于難題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=
1
2
(|x-a2|+|x-2a2|-3a2)
,
(1)當(dāng)a=1時,求不等式f(x)>1的解集;
(2)若?x∈R,f(x-1)≤f(x),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x+1|>2x的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(x2-5x+6)的單調(diào)遞減區(qū)間為  ( 。
A、(
5
2
,+∞)
B、(3,+∞)
C、(-∞,
5
2
D、(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=x2+4x+1.
(Ⅰ)求當(dāng)x≤0時,f(x)的表達式;
(Ⅱ)求滿足不等式f(x2-2)<f(x)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若AB=
3
,C=150°,則它的外接圓的面積為( 。
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M=|(x,y)|y=f(x)|,若對任意P1(x1,y1)∈M,均不存在P2(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M為“好集合”,給出下列五個集合:
①M={(x,y)|y=
1
x
};
②M={(x,y)|y=lnx};
③M={(x,y)|y=
1
4
x2+1};
④M={(x,y)|(x-2)2+y2=1};
⑤M={(x,y)|x2-2y2=1}.
其中所有“好集合”的序號是
 
.(寫出所有正確答案的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+1
-ax,x∈R,是否存在實數(shù)a,使得f(x)在給定區(qū)間(0,∞)上是單調(diào)函數(shù)?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)據(jù)m1,m2,…,mn的平均數(shù)為10,方差為2,則數(shù)據(jù)3m1+1,3m2+1,…,3mn+1的平均數(shù)是
 
,方差是
 

查看答案和解析>>

同步練習(xí)冊答案