17.已知△ABC滿足(c-b)(sinC+sinB)=(c-a)sinA,則角B=$\frac{π}{3}$.

分析 根據(jù)正弦定理和余弦定理進(jìn)行化簡即可.

解答 解:由正弦定理得(c-b)(c+b)=(c-a)a,
即c2-b2=ac-a2,
即a2+c2-b2=ac,
由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
則在△ABC中,B=$\frac{π}{3}$,
故答案為:$\frac{π}{3}$

點(diǎn)評(píng) 本題主要考查解三角形的應(yīng)用,根據(jù)正弦定理和余弦定理是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如下表所示:
積極參加班級(jí)工作不積極參加班級(jí)工作合計(jì)
學(xué)習(xí)積極性高18725
學(xué)習(xí)積極性不高61925
合計(jì)242650
(Ⅰ)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到不積極參加班級(jí)工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?
(Ⅱ)若不積極參加班級(jí)工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項(xiàng)活動(dòng),問兩名學(xué)生中有1名男生的概率是多少?
(Ⅲ)學(xué)生的積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?請(qǐng)說明理由.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
p(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.空間直角坐標(biāo)系中,已知原點(diǎn)為O,A(1,0,0),B(0,1,0),C(0,0,1),在三棱錐O-ABC中任取一點(diǎn)P(x,y,z),則滿足$\sqrt{{x^2}+{y^2}+{z^2}}≤\frac{1}{2}$的概率是( 。
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{8}$D.$\frac{π}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且cos2A=3cos(B+C)+1.
(Ⅰ)求角A的大。
(Ⅱ)若cosBcosC=-$\frac{1}{8}$,且△ABC的面積為2$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)變量x、y滿足線性約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$則目標(biāo)函數(shù)z=log2(2x+y)的最大值為( 。
A.log2$\frac{3}{2}$B.log23C.1D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的中心為坐標(biāo)原點(diǎn),離心率e=$\frac{\sqrt{6}}{3}$,A1,A2,B1,B2是其四個(gè)頂點(diǎn),且四邊形A1B1A2B2的面積為4$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過橢圓C的右焦點(diǎn)F且與橢圓C相交于M,N兩點(diǎn)的直線l,使得在直線x=3上可以找到一點(diǎn)B,滿足△MNB為正三角形?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-1,1),若點(diǎn)M(x,y)為平面區(qū)域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一個(gè)動(dòng)點(diǎn),則$\overrightarrow{OA}$•$\overrightarrow{OM}$的取值范圍是[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)y=ax-2+1(a>0且a≠1)的圖象經(jīng)過定點(diǎn) P(m,n),且過點(diǎn)Q(m-1,n)的直線l被圓C:x2+y2+2x-2y-7=0截得的弦長為3$\sqrt{2}$,則直線l的斜率為-1或-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)A、B兩點(diǎn)的坐標(biāo)分別是(-1,-1),(3,7),求線段AB的垂直平分線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案