12.若α為銳角,sinα-mcosα=a(m>0),則msinα+cosα=$\sqrt{{m}^{2}+1{-a}^{2}}$.

分析 根據(jù)(sinα-mcosα)2=a2,(msinα+cosα)2+(sinα-mcosα)2=m2+1,可得msinα+cosα的值.

解答 解:∵α為銳角sinα-mcosα=a,(m>0),∴(sinα-mcosα)2=a2,
又  (msinα+cosα)2+(sinα-mcosα)2=m2+1,∴(msinα+cosα)2=m2+1-a2
∴msinα+cosα=$\sqrt{{m}^{2}+1{-a}^{2}}$,
故答案為:$\sqrt{{m}^{2}+1{-a}^{2}}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖所示的程序框圖,運(yùn)行程序后,輸出的結(jié)果為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知一幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.14+6$\sqrt{5}$+10πB.14+6$\sqrt{5}$+20πC.12+12πD.26+6$\sqrt{5}$+10π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.高考結(jié)束后高三的8名同學(xué)準(zhǔn)備拼車去旅游,其中一班、二班、三班、四班每班各兩名,分乘甲、乙兩輛汽車,每車限坐4名同學(xué)(乘同一輛車的4名同學(xué)不考慮位置,)其中一班兩位同學(xué)是孿生姐妹,需乘同一輛車,則乘坐甲車的4名同學(xué)中恰有2名同學(xué)是來(lái)自同一班的乘坐方式共有(  )
A.18種B.24種C.48種D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成4元;乙公司無(wú)底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如表頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
 送餐單數(shù) 38 39 40 41 42
 天數(shù) 20 40 20 10 10
乙公司送餐員送餐單數(shù)頻數(shù)表
 送餐單數(shù) 38 39 40 41 42
 天數(shù) 10 20 20 40 10
(Ⅰ)現(xiàn)從甲公司記錄的100天中隨機(jī)抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(Ⅱ)若將頻率視為概率,回答下列問(wèn)題:
(i)記乙公司送餐員日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
(ii)小明擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知P(0,1)是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一點(diǎn),點(diǎn)P到橢圓C的兩個(gè)焦點(diǎn)的距離之和為2$\sqrt{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A,B是橢圓C上異于點(diǎn)P的兩點(diǎn),直線PA與直線x=4交于點(diǎn)M,是否存在點(diǎn)A,使得S△ABP=$\frac{1}{2}{S_{△ABM}}$?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列說(shuō)法錯(cuò)誤的是( 。
A.命題,“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0“
B.對(duì)于命題p:?x0∈R,x02+x0+1<0,則¬p:?x∈R,x2+x+1≥0
C.若m,n∈R,“l(fā)nm<lnn“是“em<en”的必要不充分條件
D.若p∨q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|,|$\overrightarrow$|,|$\overrightarrow{a}$+$\overrightarrow$|∈[1,3].則$\overrightarrow{a}$•$\overrightarrow$的取值范圍是[-$\frac{9}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某食品公司研發(fā)生產(chǎn)一種新的零售食品,從產(chǎn)品中抽取100件作為樣本,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(200,12.22),試計(jì)算數(shù)據(jù)落在(187.8,212.2)上的頻率;
參考數(shù)據(jù)
若Z~N(μ,δ2),則P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.
(Ⅲ)設(shè)生產(chǎn)成本為y,質(zhì)量指標(biāo)為x,生產(chǎn)成本與質(zhì)量指標(biāo)之間滿足函數(shù)關(guān)系y=$\left\{\begin{array}{l}{0.4x,x≤205}\\{0.8x-80,x>205}\end{array}\right.$,假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,試計(jì)算生產(chǎn)該食品的平均成本.

查看答案和解析>>

同步練習(xí)冊(cè)答案