中,分別為內(nèi)角A,B,C所對(duì)的邊長(zhǎng),.
(1)求角B的大小。
(2)若的面積.

(1)角B為;(2).

解析試題分析:本題考查解三角形中的正弦定理的運(yùn)用以及運(yùn)用三角公式進(jìn)行三角變換的能力和三角形面積公式,考查基本的運(yùn)算能力.第一問(wèn),由正弦定理得,再利用兩角和與差的正弦公式和倍角公式化簡(jiǎn)第二個(gè)已知條件,兩式結(jié)合,得,注意是在三角形中求角;第二問(wèn),結(jié)合第一問(wèn)的結(jié)論,得,通過(guò)邊的大小確定角的大小,已知有邊的長(zhǎng)度,要求三角形面積還需求角,由角求角,從而求出,所以代入三角形面積公式中即可.
試題解析:(1)由正弦定理及已知可得    1分
  4分
所以解得又因?yàn)樵?img src="http://thumb.zyjl.cn/pic5/tikupic/6c/e/1bctp2.png" style="vertical-align:middle;" />ABC中
所以角B為                             6
(2)由(1)知又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/24/0/eqxde.png" style="vertical-align:middle;" />所以   7分
所以 
      9分
       12分
考點(diǎn):1.正弦定理;2.兩角和與差的正弦公式;3.三角形面積公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,4sin2-cos 2A.
(1)求角A的度數(shù);
(2)若a,bc=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,角對(duì)邊分別是,且滿足
(Ⅰ)求角的大。唬á颍┤,的面積為;求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,角所對(duì)的邊分別為,已知,
(Ⅰ)求的大小;
(Ⅱ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,甲船以每小時(shí)海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于處時(shí),乙船位于甲船的北偏西方向的處,此時(shí)兩船相距海里,當(dāng)甲船航行分鐘到達(dá)處時(shí),乙船航行到甲船的北偏西方向的處,此時(shí)兩船相距海里,問(wèn)乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知的頂點(diǎn),頂點(diǎn)在直線上;
(Ⅰ)若求點(diǎn)的坐標(biāo);
(Ⅱ)設(shè),且,求角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,山頂有一座石塔,已知石塔的高度為.

(Ⅰ)若以為觀測(cè)點(diǎn),在塔頂處測(cè)得地面上一點(diǎn)的俯角為,在塔底處測(cè)得處的俯角為,用表示山的高度
(Ⅱ)若將觀測(cè)點(diǎn)選在地面的直線上,其中是塔頂在地面上的射影.已知石塔高度,當(dāng)觀測(cè)點(diǎn)上滿足時(shí)看的視角(即)最大,求山的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在△ABC中,a、b、c分別為內(nèi)角A、B、C的對(duì)邊,且.
(1)求A的大;
(2)若,試求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足 (a-c)cosB=bcosC.
(1)求角B的大。(2)若b=,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案