如圖,函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|≤
π
2
)與坐標軸的三個交點P,Q,R滿足P(1,0),∠PQR=
π
4
,M(2,-2)
為線段QR的中點,則A的值為(  )
A、2
3
B、
7
3
3
C、
8
3
3
D、4
3
考點:正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:由題意可得Q,R的坐標,利用距離公式求出周期,ω的值,通過五點法求出函數(shù)的解析式,即可求出A.
解答: 解:∵函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|≤
π
2
)與坐標軸的三個交點P,Q,R滿足P(1,0),∠PQR=
π
4
,M(2,-2)
為線段QR的中點,
∴可得Q(4,0),R(0,-4),|PQ|=3,T=6=
ω
,解得ω=
π
3
,
∴函數(shù)經(jīng)過Q,R,有
Asin(
π
3
×4+∅)=0
-4=Asin(
π
3
×0+∅)

∵|∅|
π
2

∴∅=-
π
3

∴解得A=
8
3
3

故選:C.
點評:本題考查三角函數(shù)的解析式的求法,考查計算能力,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

|
-5+i
2-3i
|=( 。
A、0
B、1
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
1
1-i
(i為虛數(shù)單位),則其共軛復(fù)數(shù)的虛部是( 。
A、-
1
2
B、
1
2
C、-
1
2
i
D、
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m=∫
 
e2
1
1
x
dx,則(1-mx)5的展開式中含x3項的系數(shù)為
 
(用具體數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是兩條不同的直線,α,β是兩個不重合的平面,則下列命題正確的是( 。
A、若m∥n,n?α,則m平行于平面α內(nèi)的任意一條直線
B、若m?α,m∥β,n∥β,則α∥β
C、若m⊥α,n⊥β,m∥n,則α∥β
D、若α∥β,m?α,n?β,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1g(ax2+4x+4),若f(1)=1,求
(1)函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)的定義域為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
π
2
<α<π,tanα-cotα=-
8
3

(1)求tanα的值;
(2)求sin(2α-
π
2
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ω=-
1
2
+
3
2
i
,集合A={z|z=1+ω+ω2+…+ωn,n∈N*},集合B={x|x=z1•z2,z1、z2∈A}(z1可以等于z2),
則集合B的子集個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi)與復(fù)數(shù)z=
5i
1+2i
所對應(yīng)的點關(guān)于虛軸對稱的點為A,則A對應(yīng)的復(fù)數(shù)為( 。
A、1+2iB、1-2i
C、-2+iD、2+i

查看答案和解析>>

同步練習(xí)冊答案