若函數(shù)y=f(x)在R上單調(diào)遞增,且f(m2)>f(-m),則實(shí)數(shù)m的取值范圍是


  1. A.
    (-∞,-1)
  2. B.
    (0,+∞)
  3. C.
    (-1,0)
  4. D.
    (-∞,-1)∪(0,+∞)
D
分析:是抽象函數(shù)單調(diào)性的應(yīng)用,借助于增函數(shù)函數(shù)值大,自變量也越大來求m的取值范圍.
解答:∵y=f(x)在R上單調(diào)遞增,
且f(m2)>f(-m),
∴m2>-m,
即m2+m>0.
解得m<-1或m>0,
即m∈(-∞,-1)∪(0,+∞).
故選 D.
點(diǎn)評:若函數(shù)y=f(x)單調(diào)遞增,則f(x1)<f(x2)?x1<x2,把抽象函數(shù)問題轉(zhuǎn)化為函數(shù)不等式或方程求解,但無論如何都必須在定義域給定的范圍內(nèi)進(jìn)行.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知變量t,y滿足關(guān)系式loga
t
a3
=logt
y
a3
,a>0且a≠1,t>0且t≠1,變量t,x滿足關(guān)系式t=ax,變量y,x滿足函數(shù)關(guān)系式y(tǒng)=f(x).
(1)求函數(shù)y=f(x)表達(dá)式;
(2)若函數(shù)y=f(x)在[2a,3a]上具有單調(diào)性,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
38
x2-2x+2+ln x.
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)在[em,+∞)(m∈Z)上有零點(diǎn),求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+2ax-3a.
(Ⅰ)若函數(shù)y=f(x)在(-∞,1)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)函數(shù)f(x)在[1,2]上的最大值為4時,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(2x)=x2-2ax+3
(1)求函數(shù)y=f(x)的解析式
(2)若函數(shù)y=f(x)在[
12
,8]上的最小值為-1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)在(0,+∞)上的導(dǎo)函數(shù)為f′(x),且不等式xf′(x)>f(x)恒成立,又常數(shù)a,b滿足a>b>0,則下列不等式一定成立的是
 

①bf(a)>af(b);②af(a)>bf(b);③bf(a)<af(b);④af(a)<bf(b).

查看答案和解析>>

同步練習(xí)冊答案