下列5個(gè)正方體圖形中,l是正方體的一條對(duì)角線,點(diǎn)M、N、P分別為其所在棱的中點(diǎn),能得出直線l⊥平面MNP的所有圖形的序號(hào)是( 。
A、①③④B、①④⑤
C、②④⑤D、①③⑤
考點(diǎn):直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:設(shè)定正方體的頂點(diǎn)如圖,連結(jié)DB,AC,根據(jù)M,P分別為中點(diǎn),判斷出MP∥AC,由四邊形ABCD為正方形,判斷出AC⊥BD進(jìn)而根據(jù)DD′⊥平面ABCD,AC?平面ABCD,判斷出DD′⊥AC,進(jìn)而根據(jù)線面垂直的判定定理推斷出AC⊥平面DBB′,根據(jù)線面垂直的性質(zhì)可知AC⊥DB′,利用線面垂直的判定定理推斷出由MP∥AC,推斷出DB′⊥MP,同理可證DB′⊥MP,DB′⊥NP,利用線面垂直的判定定理推斷出DB′⊥平面MNP.④中由①中證明可知l⊥MP,根據(jù)MP∥AC,AC⊥l,推斷出l⊥MP,進(jìn)而根據(jù)線面垂直的判定定理推斷出l⊥平面MNP,同理可證明⑤中l(wèi)⊥平面MNP.
解答: 解:設(shè)定正方體的頂點(diǎn)如圖,連結(jié)DB,AC,
∵M(jìn),P分別為中點(diǎn),
∴MP∥AC,
∵四邊形ABCD為正方形,
∴AC⊥BD,
∵BB′⊥平面ABCD,AC?平面ABCD,
∴BB′⊥AC,
∵BB′∩DB′=B,BB′?平面DBB′,AC?平面DBB′,
∴AC⊥平面DBB′,
∵DB′?平面DBB′,
∴AC⊥DB′,
∵M(jìn)P∥AC,
∴DB′⊥MP,
同理可證DB′⊥MN,DB′⊥NP,
∵M(jìn)P∩NP=P,MP?平面MNP,NP?平面MNP,
∴DB′⊥平面MNP,即l垂直于平面MNP,故①正確.
④中由①中證明可知l⊥MP,
∵M(jìn)P∥AC,
AC⊥l,
∴l(xiāng)⊥MP,
∴l(xiāng)⊥平面MNP,
同理可證明⑤中l(wèi)⊥平面MNP.
故選:B.
點(diǎn)評(píng):本題主要考查了線面垂直的判定定理.考查了學(xué)生空間思維能力和觀察能力,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論中正確的是(  )
A、Z⊆N⊆Q⊆R⊆C
B、N⊆Z⊆Q⊆C⊆R
C、N⊆Z⊆Q⊆R⊆C
D、R⊆N⊆Z⊆Q⊆C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從正方形的四個(gè)頂點(diǎn)及其中心這五個(gè)點(diǎn)中,任取兩個(gè)點(diǎn),則這兩個(gè)點(diǎn)的距離不大于該正方形邊長的概率為( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2x+lnx+1.
(1)若函數(shù)f(x)在其定義域內(nèi)為單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)設(shè)g(x)=mx2+4mx+3,當(dāng)a=1時(shí),不等式f(x1)≤g(x2),x1∈(0,1],x2∈(-∞,+∞)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電視臺(tái)的一個(gè)綜藝欄目對(duì)六個(gè)不同的節(jié)目排演出順序,最前只能排甲或乙,最后不能排甲,則不同的排法共有(  )
A、192種B、216種
C、240種D、288種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班級(jí)有6名同學(xué)去報(bào)名參加校學(xué)生會(huì)的4項(xiàng)社團(tuán)活動(dòng),若甲、乙兩位同學(xué)不參加同一社團(tuán),每個(gè)社團(tuán)都有人參加,每人只參加一個(gè)社團(tuán),則不同的報(bào)名方案數(shù)為( 。
A、4320B、2400
C、2160D、1320

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

春節(jié)過后購物旺季隨之轉(zhuǎn)向淡季,商家均采用各種促銷方法促銷,某商場(chǎng)規(guī)定:凡購物均可獲得一次抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)方法為:從編號(hào)1-6的相同小球中任意抽取一個(gè)小球記下編號(hào)后放回,若抽到編號(hào)為6的小球則再獲一次機(jī)會(huì),最多抽取二次.
(1)求顧客恰有兩次抽獎(jiǎng)機(jī)會(huì)的概率;
(2)若抽得小球編號(hào)之和大于10為中獎(jiǎng),求中獎(jiǎng)概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(diǎn)(1,
3
2
),它的左焦點(diǎn)為F(-c,0),直線l1:y=x-c與橢圓C將于A,B兩點(diǎn),△ABF的周長為a3
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點(diǎn)P是直線l2:y=x-3c上的一個(gè)動(dòng)點(diǎn),經(jīng)過點(diǎn)P作橢圓C的兩條切線PM,PN,M,N分別為切點(diǎn),求證:直線MN過定點(diǎn),并求出此定點(diǎn)坐標(biāo).
(注:經(jīng)過橢圓:
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn)(x0,y0)的橢圓的切線方程為
x0x
a2
+
y0y
b2
=1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x+y≤5
2x+y≤6
(x≥0,y≥0),則目標(biāo)函數(shù)k=6x+8y取最大值時(shí)點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案