一個(gè)幾何體的三視圖如圖所示,則此幾何體的體積為
 

考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:通過三視圖判斷幾何體的特征,利用三視圖的數(shù)據(jù),求出幾何體的體積即可.
解答: 解:由三視圖可知幾何體是底面為平行四邊形的四棱柱,平行四邊形的底邊長為3,高為
3
,棱柱的高為3,
∴所求幾何體的體積為,3×
3
×3=9
3

故答案為:9
3
點(diǎn)評(píng):本題考查三視圖與幾何體的關(guān)系,正確判斷幾何體的特征是解題的關(guān)鍵,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1-x2,x≤1
x2+x-2,x>1
,則f(4)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合{1,2,3,…,n}(n∈N*,n≥3),若該集合具有下列性質(zhì)的子集:每個(gè)子集至少含有2個(gè)元素,且每個(gè)子集中任意兩個(gè)元素之差的絕對(duì)值大于1,則稱這些子集為T子集,記T子集的個(gè)數(shù)為an
(1)若an=7,則n=
 

(2)a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,正確的有
 
.(寫出所有正確命題的序號(hào)).
①若f′(x0)=0,則f(x0)為f(x)的極值點(diǎn);
②在閉區(qū)間[a,b]上,極大值中最大的就是最大值;
③若f(x)的極大值為f(x1),f(x)的極小值為f(x2),則f(x1)>f(x2);
④有的函數(shù)有可能有兩個(gè)最小值;
⑤已知函數(shù)f(x)=ex,對(duì)于f(x)定義域內(nèi)的任意一個(gè)x1都存在唯一個(gè)x2,使f(x1)f(x2)=1成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)某種產(chǎn)品的月產(chǎn)量y與月份x之間滿足關(guān)系y=a•0.5x+b.現(xiàn)已知該廠今年1月份、2月份生產(chǎn)該產(chǎn)品分別為1萬件、1.5萬件.則此工廠3月份該產(chǎn)品的產(chǎn)量為
 
萬件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

統(tǒng)計(jì)某學(xué)校高三年級(jí)某班40名學(xué)生的數(shù)學(xué)期末考試成績,分?jǐn)?shù)均在40至100之間,得到的頻率分布直方圖如圖所示.則圖中a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程ex-2x=-a有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x+1>0},B={x|x-3<0},則A∩(∁RB)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過原點(diǎn)且經(jīng)過直線I1:3x+4y-2=0,I2:2x+y+2=0交點(diǎn)的直線方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案