20.已知集合A={x|x∈N|2≤x≤5},B={x|y=$\sqrt{3-x}$},則A∩B=( 。
A.{2}B.{2,3}C.{2,3,4}D.{4,5}

分析 求出集合A和B,由此利用交集定義能求出集合A∩B.

解答 解:集合A={x|x∈N|2≤x≤5}={2,3,4,5},B={x|y=$\sqrt{3-x}$}=(-∞,3],
則A∩B={2,3},
故選:B.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$,且$\overrightarrow a=({1,0})$,$|{\overrightarrow b}|=1$則$|{\overrightarrow a+2\overrightarrow b}|$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{m}$=1的離心率為$\sqrt{m}$,則此雙曲線的漸近線方程為( 。
A.y=±$\frac{\sqrt{2}}{2}$xB.y=±$\frac{\sqrt{3}}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{1}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若直線y=4x是曲線f(x)=x4+a的一條切線,則a的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\frac{1}{2}$mcos2x+(m-2)sinx,其中1≤m≤2,若函數(shù)f(x)的最大值記為g(m),則g(m)的最小值為( 。
A.-$\frac{1}{4}$B.1C.3-$\sqrt{3}$D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=sin$\frac{πx}{2}$,g(x)=cos$\frac{πx}{2}$則集合{x|f(x)=g(x)}等于( 。
A.{x|x=4k+$\frac{1}{2}$,k∈Z}B.{x|x=2k+$\frac{1}{2}$,k∈Z}C.{x|x=4k±$\frac{1}{2}$,k∈Z}D.{x|x=2k+1,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.數(shù)學(xué)名著《算學(xué)啟蒙》中有如下問題:“松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.”如圖是源于其思想的一個(gè)程序框圖,若輸入的a,b的值分別為16,4,則輸出的n的值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.銳角△ABC中角A,B,C的對(duì)邊分別為a,b,c,若a=4,b=3,且△ABC的面積為3$\sqrt{3}$,則c=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{2x+y-5≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,若z=3x+y的最大值是( 。
A.6B.7C.0D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案