10.向量$\overrightarrow a=({2,-1}),\overrightarrow b=({x,1})$,若$2\overrightarrow a+\overrightarrow b$與$\overrightarrow b$共線,則x=-2.

分析 利用向量共線定理即可得出.

解答 解:由已知可得$2\overrightarrow a+\overrightarrow b=(4+x,-1)$,
因?yàn)?2\vec a+\vec b$與$\overrightarrow b$共線,
所以4+x+x=0,
解得x=-2.
故答案為:-2.

點(diǎn)評(píng) 本題考查了向量共線定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中既是奇函數(shù),又在區(qū)間(-1,1)上是增函數(shù)的為(  )
A.y=|x+1|B.y=sinxC.y=2x+2-xD.y=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知F1,F(xiàn)2分別是橢圓$\frac{x^2}{4}+{y^2}=1$的兩焦點(diǎn),點(diǎn)P是該橢圓上一點(diǎn),$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|=2\sqrt{3}$,則∠F1PF2=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.$\lim_{x→4}\frac{{\sqrt{x}-2}}{x-4}$=$\frac{1}{4}$;    $\lim_{x→3}\frac{{{x^2}-5x+6}}{{{x^2}-8x+15}}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{6}{x-1}$,
(1)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性并用單調(diào)性的定義證明;
(2)若x∈[2,4],求函數(shù)f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式-x2+5x>6的解集是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.寶寶的健康成長(zhǎng)是媽媽們最關(guān)心的問題,父母親為嬰兒選擇什么品牌的奶粉一直以來都是育嬰中的一個(gè)重要話題.為了解國(guó)產(chǎn)奶粉的知名度和消費(fèi)者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個(gè)奶粉的銷量(單位:罐),繪制出如圖1的管狀圖:

(1)根據(jù)給出的這兩年銷量的管狀圖,對(duì)該超市這兩年品牌奶粉銷量的前五強(qiáng)進(jìn)行排名;
(2)分別計(jì)算這5個(gè)品牌奶粉2016年所占總銷量(僅指這5個(gè)品牌奶粉的總銷量)的百分比(百分?jǐn)?shù)精確到個(gè)位),并將數(shù)據(jù)填入如圖2餅狀圖中的括號(hào)內(nèi);
(3)試以(2)中的百分比為概率,若隨機(jī)選取2名購(gòu)買這5個(gè)品牌中任意1個(gè)品牌的消費(fèi)者進(jìn)行采訪,記X為被采訪者中購(gòu)買飛鶴奶粉的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過點(diǎn)P(-1,1)作圓C:(x-t)2+(y-t+2)2=1(t∈R)的切線,切點(diǎn)分別為A,B,則$\overrightarrow{PA}•\overrightarrow{PB}$的最小值為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=sinx+cosx,則f'(π)=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案