5.為得到函數(shù)y=cos2x的圖象,只需將$y=cos(2x+\frac{π}{6})$函數(shù)的圖象( 。
A.向左平移$\frac{π}{12}$個(gè)單位B.向右平移$\frac{π}{12}$個(gè)單位
C.向左平移$\frac{π}{6}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位

分析 由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:∵$y=cos(2x+\frac{π}{6})$=cos[2(x+$\frac{π}{12}$)],
∴只需將$y=cos(2x+\frac{π}{6})$函數(shù)的圖象上所有的點(diǎn)向右平移$\frac{π}{12}$個(gè)單位即可得到函數(shù)y=cos2x的圖象,
故選:B.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥面ABCD,EF∥AB,AB=2,EB=$\sqrt{3}$的中點(diǎn).
(1)求證:EM∥平面ADF;
(2)求二面角D-AF-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求曲線y=sin x與直線x=-$\frac{π}{4}$,x=$\frac{5}{4}$π,y=0所圍成圖形的面積(如圖).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)$\overrightarrow{a},\overrightarrow$是向量,則“|$\overrightarrow{a}$|=|$\overrightarrow$|”是“|$\overrightarrow{a}+\overrightarrow$|=|$\overrightarrow{a}-\overrightarrow$|”的既不充分不必要條件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.過橢圓$\frac{x^2}{9}+\frac{y^2}{3}=1$上一點(diǎn)$M(\sqrt{3}$,$\sqrt{2})$作直線MA、MB交橢圓于A、B兩點(diǎn),若MA與MB的斜率互為相反數(shù),則直線AB的斜率為$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-2x,其中a≤0
(Ⅰ) 若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x+b,求a-2b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)設(shè)函數(shù)g(x)=x2-3x+3,如果對(duì)于任意的x,t∈[0,1]都有f(x)≤g(t)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,中心均為原點(diǎn)O的橢圓與雙曲線有公共焦點(diǎn),M,N是雙曲線的兩頂點(diǎn).若M,O,N將橢圓長軸四等分,則橢圓與雙曲線的離心率的比值是為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差xi與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù)yi(i=1,2,…,5),作了初步處理,得到下表:
日期3月1日3月2日3月3日3月4日3月5日
溫差xi0C)101113129
發(fā)芽率yi(顆)2325302616
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均小于26”的概率;
(2)請(qǐng)根據(jù)3月1日至3月5日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并預(yù)報(bào)3月份晝夜溫差為14度時(shí)實(shí)驗(yàn)室每天100顆種子浸泡后的發(fā)芽(取整數(shù)值).
附:回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中的斜率和截距最小二乘法估計(jì)公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x,$\sum_{i=1}^5{{x_i}{y_i}=1351}$,$\sum_{i=1}^5{x_i^2}$=615.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求過點(diǎn)(1,2)且與曲線$y=\sqrt{x}$相切的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案