已知
a
=(0,3,3),
b
=(-1,1,0),則向量
a
b
的夾角為( 。
分析:利用向量的夾角公式即可得出.
解答:解:∵
a
b
=0×(-1)+3×1+3×0=3,|
a
|=
0+32+32
=3
2
,|
b
|=
2

cos<
a
,
b
=
|
a
b
|
|
a
| |
b
|
=
3
3
2
2
=
1
2
,
點(diǎn)評:熟練掌握向量的夾角公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•紹興一模)已知a為[0,1]上的任意實(shí)數(shù),函數(shù)f1(x)=x-a,f2(x)=-x2+1,f3(x)=-x3+x2,則以下結(jié)論:
①對于任意x0∈R,總存在fi(x),fj(x)({i,j}?{1,2,3}),使得fi(x)fj(x)≥0;
②對于任意x0∈R,總存在fi(x),fj(x)({i,j}?{1,2,3}),使得fi(x)fj(x)≤0;
③對于任意的函數(shù)fi(x),fj(x)({i,j}?{1,2,3}),總存在x0∈R,使得;fi(x)fj(x)>0;
④對于任意的函數(shù)fi(x),fj(x)({i,j}?{1,2,3}),總存在x0∈R,使得;fi(x)fj(x)<0.
其中正確的為
①④
①④
.(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2|
b
|≠0
,若關(guān)于x的函數(shù)f(x)=
1
3
x3+
1
2
|
a
|x2+
a
b
x
在R上是單調(diào)函數(shù),則向量
a
b
的夾角范圍為
[0,
π
3
]
[0,
π
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線的一個(gè)方向向量.
(1)求雙曲線C的方程;
(2)若過點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(都不同于點(diǎn)E),且EM⊥EN,那么直線MN是否過定點(diǎn)?若是,請求出此定點(diǎn)的坐標(biāo);若不是,說明理由.然后在以下三個(gè)情形中選擇一個(gè),寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點(diǎn);
情形二:拋物線y2=2px(p>0)及它的頂點(diǎn);
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:松江區(qū)二模 題型:解答題

已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線的一個(gè)方向向量.
(1)求雙曲線C的方程;
(2)若過點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(都不同于點(diǎn)E),且EM⊥EN,那么直線MN是否過定點(diǎn)?若是,請求出此定點(diǎn)的坐標(biāo);若不是,說明理由.然后在以下三個(gè)情形中選擇一個(gè),寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點(diǎn);
情形二:拋物線y2=2px(p>0)及它的頂點(diǎn);
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案