分析 (1)由函數(shù)圖象可求周期T,利用周期公式可求ω,又$f(\frac{5π}{6})=2$,即$sin(-\frac{3}{2}×\frac{5π}{6}+φ)=1$,結(jié)合范圍-π<φ<π,可求φ,即可得解f(x)的表達(dá)式.
(2)由(1)可知:$f(x)=2sin(-\frac{3}{2}x-\frac{π}{4})=-2sin(\frac{3}{2}x+\frac{π}{4})$,由$x∈[\frac{3π}{2},2π]$,可求$\frac{3}{2}x+\frac{π}{4}∈[\frac{5π}{2},\frac{13π}{4}]$,利用正弦函數(shù)的圖象和性質(zhì)即可得解.
解答 解:(1)∵由題意可得:$\frac{3}{4}•\frac{2π}{|ω|}=\frac{5π}{6}-(-\frac{π}{6})$(ω<0),
∴$ω=-\frac{3}{2}$,
∴$f(x)=2sin(-\frac{3}{2}x+φ)$,
又∵$f(\frac{5π}{6})=2$,即$sin(-\frac{3}{2}×\frac{5π}{6}+φ)=1$,
而-π<φ<π,
∴故$φ=-\frac{π}{4}$,
∴$f(x)=2sin(-\frac{3}{2}x-\frac{π}{4})$.
(2)∵由(1)可知:$f(x)=2sin(-\frac{3}{2}x-\frac{π}{4})=-2sin(\frac{3}{2}x+\frac{π}{4})$,
∵由$x∈[\frac{3π}{2},2π]$,則$\frac{3}{2}x+\frac{π}{4}∈[\frac{5π}{2},\frac{13π}{4}]$,
∴最大值為$\sqrt{2}$,最小值為-2.
點(diǎn)評(píng) 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象和性質(zhì),考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | 0 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com