8.已知α,β是兩個(gè)不同的平面,m,n是兩條不重合的直線,則下列命題中正確的是( 。
A.若m∥α,α∩β=n,則m∥nB.若m⊥α,m⊥n,則n∥α
C.若m⊥α,n⊥β,α⊥β,則m⊥nD.若α⊥β,α∩β=n,m⊥n,則m⊥β

分析 由空間中直線與直線、直線與平面位置關(guān)系逐一核對(duì)四個(gè)命題得答案.

解答 解:對(duì)于A,如圖,m∥α,α∩β=n,此時(shí)m,n異面,故A錯(cuò)誤;
對(duì)于B,若m⊥α,m⊥n,則n∥α或n?α,故B錯(cuò)誤;
對(duì)于C,若n⊥β,α⊥β,則n∥α或n?α,又m⊥α,∴則m⊥n,故C正確;
對(duì)于D,若α⊥β,α∩β=n,m⊥n,則m可能與β相交,也可能與β平行,也可能在β內(nèi),故D錯(cuò)誤.
∴正確的選項(xiàng)為C.
故選:C.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查了空間直線與直線、直線與平面位置關(guān)系的判斷,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知點(diǎn)A是拋物線y2=4x的對(duì)稱(chēng)軸與準(zhǔn)線的交點(diǎn),點(diǎn)B是其焦點(diǎn),點(diǎn)P在該拋物線上,且滿(mǎn)足|PA|=m|PB|,當(dāng)m取得最大值時(shí),點(diǎn)P恰在以A,B為焦點(diǎn)的雙曲線上,則雙曲線的實(shí)軸長(zhǎng)為(  )
A.$\sqrt{2}$-1B.2$\sqrt{2}$-2C.$\sqrt{2}$+1D.2$\sqrt{2}$+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.計(jì)算:(1-2i)(3+4i)(-1+i).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列說(shuō)法中正確的是( 。
A.單位向量的長(zhǎng)度為1
B.長(zhǎng)度相等的向量叫做相等向量
C.共線向量的夾角為0°
D.共面向量就是向量所在的直線在同一平面內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.向量$\overrightarrow{AB}$+$\overrightarrow{BO}$+$\overrightarrow{OM}$+$\overrightarrow{MB}$化簡(jiǎn)后等于( 。
A.$\overrightarrow{AC}$B.$\overrightarrow{BC}$C.$\overrightarrow{AM}$D.$\overrightarrow{AB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),M,N是雙曲線上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),P是雙曲線上的動(dòng)點(diǎn),直線PM,PN的斜率分別為k1,k2(k1•k2≠0),若|k1|+|k2|的最小值為1,則雙曲線的離心率為$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=$\frac{{x}^{2}-3}{{e}^{x}}$的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸的橢圓C的一個(gè)焦點(diǎn)F在拋物線y2=4x的準(zhǔn)線上,且橢圓C過(guò)點(diǎn)P(1,$\frac{3}{2}$).
(1)求橢圓C的方程;
(2)若直線l過(guò)點(diǎn)F,且與橢圓C相交于A,B不同兩點(diǎn),M為橢圓C上的另一個(gè)焦點(diǎn),求△MAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.f(x)是定義在R上的偶函數(shù),f(x+3)=-$\frac{1}{f(x)}$,又當(dāng)-3≤x≤-2時(shí),f(x)=2x,則f(11.5)=$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案