【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷(xiāo)售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷(xiāo)售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為G(x)(萬(wàn)元),其中固定成本為2.8萬(wàn)元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬(wàn)元(總成本=固定成本+生產(chǎn)成本).銷(xiāo)售收入R(x)(萬(wàn)元)滿(mǎn)足 ,假定該產(chǎn)品產(chǎn)銷(xiāo)平衡(即生產(chǎn)的產(chǎn)品都能賣(mài)掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:
(1)寫(xiě)出利潤(rùn)函數(shù)y=f(x)的解析式(利潤(rùn)=銷(xiāo)售收入﹣總成本);
(2)要使工廠有盈利,求產(chǎn)量x的范圍;
(3)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?

【答案】
(1)解:由題意得G(x)=2.8+x

,

∴f(x)=R(x)﹣G(x)

=


(2)解:∵f(x)=

∴當(dāng)0≤x≤5時(shí),由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;.

當(dāng)x>5時(shí),由f(x)=8.2﹣x>0,得5<x<8.2.

∴要使工廠有盈利,求產(chǎn)量x的范圍是(1,8.2)


(3)解:∵f(x)= ,

∴當(dāng)x>5時(shí),函數(shù)f(x)遞減,

∴f(x)<f(5)=3.2(萬(wàn)元).

當(dāng)0≤x≤5時(shí),函數(shù)f(x)=﹣0.4(x﹣4)2+3.6,

當(dāng)x=4時(shí),f(x)有最大值為3.6(萬(wàn)元).

所以當(dāng)工廠生產(chǎn)4百臺(tái)時(shí),可使贏利最大為3.6萬(wàn)元


【解析】(1)由題意得G(x)=2.8+x.由 ,f(x)=R(x)﹣G(x),能寫(xiě)出利潤(rùn)函數(shù)y=f(x)的解析式.(2)當(dāng)0≤x≤5時(shí),由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;當(dāng)x>5時(shí),由f(x)=8.2﹣x>0,得5<x<8.2.由此能求出要使工廠有盈利,產(chǎn)量x的范圍.(3)當(dāng)x>5時(shí),由函數(shù)f(x)遞減,知f(x)<f(5)=3.2(萬(wàn)元).當(dāng)0≤x≤5時(shí),函數(shù)f(x)=﹣0.4(x﹣4)2+3.6,當(dāng)x=4時(shí),f(x)有最大值為3.6(萬(wàn)元).由此能求出工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x﹣1+ ,(a∈R,e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),若直線l:y=kx﹣1與曲線y=f(x)沒(méi)有公共點(diǎn),求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中, , 分別為棱的中點(diǎn).

(1)在平面內(nèi)過(guò)點(diǎn)平面于點(diǎn),并寫(xiě)出作圖步驟,但不要求證明.

(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在幾何體中,四邊形是矩形, 平面, . , 分別是線段的中點(diǎn).

(Ⅰ)求證: 平面

(Ⅱ)求與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車(chē)是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車(chē)單車(chē)共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個(gè)共享單車(chē)企業(yè)在某個(gè)城市就“一天中一輛單車(chē)的平均成本(單位:元)與租用單車(chē)的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過(guò)程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見(jiàn)下表:

租用單車(chē)數(shù)量(千輛)

2

3

4

5

8

每天一輛車(chē)平均成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):

①完成下表(計(jì)算結(jié)果精確到0.1)(備注: ,稱(chēng)為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));

租用單車(chē)數(shù)量 (千輛)

2

3

4

5

8

每天一輛車(chē)平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較的大小,判斷哪個(gè)模型擬合效果更好.

(2)這個(gè)公司在該城市投放共享單車(chē)后,受到廣大市民的熱烈歡迎,共享單車(chē)常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車(chē)一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬(wàn)輛時(shí),該公司平均一輛單車(chē)一天能收入10元,6元收入的概率分別為0.4,0.6.問(wèn)該公司應(yīng)該投放8千輛還是1萬(wàn)輛能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車(chē)的平均成本,利潤(rùn)=收入-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,曲線C:(x﹣1)2+y2=1.直線l經(jīng)過(guò)點(diǎn)P(m,0),且傾斜角為 .以O(shè)為極點(diǎn),以x軸正半軸為極軸,建立坐標(biāo)系.
(1)寫(xiě)出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)解不等式f(x)<
(2)求函數(shù)f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)是棱長(zhǎng)為2的正方體的棱的中點(diǎn),點(diǎn)在面所在的平面內(nèi),若平面分別與平面和平面所成的銳二面角相等,則點(diǎn)到點(diǎn)的最短距離是( )

A. B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)在店慶一周年開(kāi)展“購(gòu)物折上折活動(dòng)”:商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的八折出售,折后價(jià)格每滿(mǎn)500元再減100元.如某商品標(biāo)價(jià)為1500元,則購(gòu)買(mǎi)該商品的實(shí)際付款額為1500×0.8﹣200=1000(元).設(shè)購(gòu)買(mǎi)某商品得到的實(shí)際折扣率= .設(shè)某商品標(biāo)價(jià)為x元,購(gòu)買(mǎi)該商品得到的實(shí)際折扣率為y.
(1)寫(xiě)出當(dāng)x∈(0,1000]時(shí),y關(guān)于x的函數(shù)解析式,并求出購(gòu)買(mǎi)標(biāo)價(jià)為1000元商品得到的實(shí)際折扣率;
(2)對(duì)于標(biāo)價(jià)在[2500,3500]的商品,顧客購(gòu)買(mǎi)標(biāo)價(jià)為多少元的商品,可得到的實(shí)際折扣率低于 ?

查看答案和解析>>

同步練習(xí)冊(cè)答案