A. | $\sqrt{15}$ | B. | $\frac{\sqrt{17}}{2}$ | C. | $\sqrt{17}$ | D. | $\frac{\sqrt{15}}{2}$ |
分析 求出雙曲線的漸近線方程,令y=-1可得兩交點(diǎn)的橫坐標(biāo),再由三角形的面積公式可得b=4a,由a,b,c的關(guān)系和離心率公式計(jì)算即可得到所求值.
解答 解:雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1的兩條漸近線方程為y=±$\frac{a}$x,
令y=-1可得x=±$\frac{a}$,
由漸近線與直線y=-1所圍成的三角形的面積為4,
可得$\frac{1}{2}$•1•$\frac{2b}{a}$=4,即有b=4a,
則c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{17}$a,
即有e=$\frac{c}{a}$=$\sqrt{17}$.
故選:C.
點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用漸近線方程,同時(shí)考查三角形的面積的計(jì)算,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①②③④ | B. | ①②④ | C. | ①④ | D. | ①③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{π}{6}$,0) | B. | ($\frac{π}{4}$,0) | C. | ($\frac{2π}{3}$,0) | D. | ($\frac{5π}{6}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sinα>cosα>tanα | B. | tanα>cosα>sinα | C. | cosα>tanα>sinα | D. | tanα>sinα>cosα |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,$\sqrt{2}$)∪($\sqrt{2}$,+∞) | B. | ($\sqrt{2}$,+∞) | C. | (1,$\sqrt{2}$) | D. | ($\sqrt{2}$,2) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com