11.給出下列隨機(jī)變量:
①?gòu)V州白云機(jī)場(chǎng)侯機(jī)室中一天的旅客數(shù)量X;
②高要某氣象站觀察到一天中高要的氣溫X;
③深圳歡樂(lè)谷一日接待游客的數(shù)量X;
④西江大橋一天經(jīng)過(guò)的車(chē)輛數(shù)X.
其中是離散型隨機(jī)變量的為( 。
A.①②③④B.①②④C.①④D.①③④

分析 根據(jù)隨機(jī)變量的取值是否有限或可列進(jìn)行判斷.

解答 解:①?gòu)V州白云機(jī)場(chǎng)侯機(jī)室中一天的旅客數(shù)量X的取值為可列的自然數(shù),
②高要某氣象站觀察到一天中高要的氣溫X的取值為無(wú)數(shù)多個(gè),
③深圳歡樂(lè)谷一日接待游客的數(shù)量X的取值為可列的自然數(shù),
④西江大橋一天經(jīng)過(guò)的車(chē)輛數(shù)X的取值為可列的自然數(shù),
故①③④為離散型隨機(jī)變量,②為連續(xù)型隨機(jī)變量.
故選:D.

點(diǎn)評(píng) 本題考查了離散性隨機(jī)變量的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在公差不為0的等差數(shù)列{an}中,a2+a4=ap+aq,記$\frac{1}{p}$+$\frac{9}{q}$的最小值為m,若數(shù)列{bn}滿足b1=$\frac{2}{11}$m,則2bn+1-bn•bn+1=1,b1+$\frac{_{2}}{{2}^{2}}$+$\frac{_{3}}{{3}^{2}}$+…+$\frac{_{100}}{{100}^{2}}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.證明函數(shù)f(x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$(x∈R)關(guān)于($\frac{1}{2}$,$\frac{1}{2}$)對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.雙曲線x2-$\frac{{y}^{2}}{3}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F2作傾斜角為150°的直線交雙曲線于A、B兩點(diǎn),則△F1AB的周長(zhǎng)是3+3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若(a-2+2ai)i為實(shí)數(shù)(其中a∈R,i為虛數(shù)單位),則|$\frac{a+i}{i}$|=( 。
A.5B.1C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若sinα=$\frac{1}{\sqrt{5}}$,sinβ=$\frac{1}{\sqrt{10}}$,且α、β∈(0,$\frac{π}{2}$),則α+β是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)f(x)=$\frac{{x}^{2}-3x+4}{x}$,g(x)=mx+2,若對(duì)任意的x1∈[1,3],總存在x2∈[1,3],使得f(x2)<g(x1),則實(shí)數(shù)m的取值范圍是(-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線與直線y=-1所圍成的三角形的面積為4,則雙曲線C的離心率為( 。
A.$\sqrt{15}$B.$\frac{\sqrt{17}}{2}$C.$\sqrt{17}$D.$\frac{\sqrt{15}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若α為銳角,3sinα=tanα,則cos(α-$\frac{π}{4}$)=$\frac{4+\sqrt{2}}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案