【題目】已知拋物線的準(zhǔn)線方程為,點(diǎn)為坐標(biāo)原點(diǎn),不過(guò)點(diǎn)的直線與拋物線交于不同的兩點(diǎn)

(1)如果直線過(guò)點(diǎn),求證: ;

(2)如果,證明直線必過(guò)一定點(diǎn),并求出該定點(diǎn).

【答案】(1)見(jiàn)解析;(2)過(guò)定點(diǎn)

【解析】分析第一問(wèn)首先根據(jù)拋物線的準(zhǔn)線,求得拋物線的方程,根據(jù)直線過(guò)的頂點(diǎn),結(jié)合拋物線的對(duì)稱性,得到直線的斜率一定不等于零,設(shè)出直線的方程與拋物線方程聯(lián)立,利用韋達(dá)定理求得兩根和與兩根積,之后應(yīng)用向量的數(shù)量積坐標(biāo)公式求得其為零,從而斷定第二問(wèn)先設(shè)出直線的方程,然后與橢圓方程聯(lián)立,利用數(shù)量積等于零,結(jié)合韋達(dá)定理得到其滿足的關(guān)系,從而證得對(duì)應(yīng)的直線過(guò)定點(diǎn).

詳解:(1)拋物線的準(zhǔn)線方程為,

所以拋物線的方程為

因?yàn)橹本過(guò)點(diǎn),故可設(shè)直線的方程為,代入拋物線中

,

設(shè)

,

,

所以

所以

(2)設(shè)直線的方程為

代入到拋物線方程整理得

設(shè)

根據(jù)韋達(dá)定理,,

因?yàn)?/span>

解得, (舍去)

所以直線的方程為

所以不論為何值,直線恒過(guò)定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為

(1)若函數(shù)時(shí)有極值,求表達(dá)式;

(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)fx)=3x

(1)若fx)=8,求x的值;

(2)對(duì)于任意的x∈[0,2],[fx)-3]3x+13-m≥0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.

)求抽取的卡片上的數(shù)字滿足的概率;

)求抽取的卡片上的數(shù)字,不完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:“x∈[0,1],a≥ex”;命題q:“x0∈R,x +4x0+a=0”.若命題“p∧q”是假命題,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,4]
B.(﹣∞,1)∪(4,+∞)
C.(﹣∞,e)∪(4,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題: ①若a<b,則a2<b2
②若a≥b>﹣1,則 ;
③若正整數(shù)m和n滿足m<n,則 ;
④若x>0,且x≠1,則lnx+ ≥2.
其中所有真命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2-(a+2)x+lnx

(1)當(dāng)a=1時(shí),求曲線yf(x)在點(diǎn)(1,f(1))處的切線方程;

(2)若對(duì)任意x1,x2∈(0,+∞),x1x2,有f(x1)+2x1f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2019·濰坊期末]某鋼鐵加工廠新生產(chǎn)一批鋼管,為了了解這批產(chǎn)品的質(zhì)量狀況,檢驗(yàn)員隨機(jī)抽取了100件鋼管作為樣本進(jìn)行檢測(cè),將它們的內(nèi)徑尺寸作為質(zhì)量指標(biāo)值,由檢測(cè)結(jié)果得如下頻率分布表和頻率分布直方圖:

分組

頻數(shù)

頻率

25.05~25.15

2

0.02

25.15~25.25

25.25~25.35

18

25.35~25.45

25.45~25.55

25.55~25.65

10

0.1

25.65~25.75

3

0.03

合計(jì)

100

1

(1)求,;

(2)根據(jù)質(zhì)量標(biāo)準(zhǔn)規(guī)定:鋼管內(nèi)徑尺寸大于等于25.75或小于25.15為不合格,鋼管尺寸在為合格等級(jí),鋼管尺寸在為優(yōu)秀等級(jí),鋼管的檢測(cè)費(fèi)用為0.5元/根.

(i)若從的5件樣品中隨機(jī)抽取2根,求至少有一根鋼管為合格的概率;

(ii)若這批鋼管共有2000根,把樣本的頻率作為這批鋼管的頻率,有兩種銷售方案:

①對(duì)該批剩余鋼管不再進(jìn)行檢測(cè),所有鋼管均以45元/根售出;

②對(duì)該批剩余鋼管一一進(jìn)行檢測(cè),不合格產(chǎn)品不銷售,合格等級(jí)的鋼管50元/根,優(yōu)等鋼管60元/根.

請(qǐng)你為該企業(yè)選擇最好的銷售方案,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x,y滿足不等式組 ,若z=ax+y的最大值為2a+4,最小值為a+1,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

同步練習(xí)冊(cè)答案