14.已知數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3an-1,其中n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)anbn=$\frac{{3}^{n}}{{n}^{2}+n}$,求數(shù)列{bn}的前n項(xiàng)和為Tn

分析 ( I)分n=1與n≥2討論,從而判斷出{an}是等比數(shù)列,從而求通項(xiàng)公式;
( II)化簡(jiǎn)可得${b_n}=\frac{3}{{{n^2}+n}}$=3($\frac{1}{n}$-$\frac{1}{n+1}$),利用裂項(xiàng)求和法求解.

解答 解:( I)∵${S_n}=\frac{3}{2}{a_n}-\frac{1}{2}\;(n∈{N^*})$,①
當(dāng)n=1時(shí),a1=$\frac{3}{2}$a1-$\frac{1}{2}$,∴a1=1,
當(dāng)n≥2時(shí),∵Sn-1=$\frac{3}{2}$an-1-$\frac{1}{2}$,②
①-②得:
an=$\frac{3}{2}$an-$\frac{3}{2}$an-1,
即:an=3an-1(n≥2),
又∵a1=1,a2=3,
∴$\frac{{{a_{n+1}}}}{a_n}=3$對(duì)n∈N*都成立,
故{an}是等比數(shù)列,
∴${a_n}={3^{n-1}}\;(n∈{N^*})$.
( II)∵${a_n}{b_n}=\frac{3^n}{{{n^2}+n}}$,
∴${b_n}=\frac{3}{{{n^2}+n}}$=3($\frac{1}{n}$-$\frac{1}{n+1}$),
∴${T_n}=3(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n-1})$,
∴${T_n}=3(1-\frac{1}{n+1})=3-\frac{3}{n+1}$,
即Tn=$\frac{3n}{n+1}$.

點(diǎn)評(píng) 本題考查了等比數(shù)列的應(yīng)用及分類討論的思想應(yīng)用,同時(shí)考查了裂項(xiàng)求和法的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知$\frac{1}{1-i}$十$\frac{1}{2+3i}$=x+yi,求實(shí)數(shù)x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=lnx-ax2,且函數(shù)f(x)在點(diǎn)(2,f(2))處 的切線的一個(gè)方向向量是(2,-3).
(1)若關(guān)于x的方程f(x)+$\frac{3}{2}$x2=3x-b在區(qū)間[$\frac{1}{2}$,2]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(2)證明:$\sum_{k=2}^{n}$$\frac{1}{{\frac{1}{2}k}^{2}+f(k)}$>$\frac{n-1}{2(n+1)}$(n∈N*,且n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,則輸出的k值為( 。
A.7B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=ln(1+x).
(Ⅰ)若曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=g(x),當(dāng)x≥0時(shí),f(x)≤$\frac{x(1+tx)}{1+g(x)}$,求t的最小值;
(Ⅱ)當(dāng)n∈N*時(shí),證明:$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}>-\frac{1}{4n}+ln2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知$\frac{2i-1}{1+ai}\;(a∈R)$是純虛數(shù),則a=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在樣本的頻率分布直方圖中,一共有m(m≥3)個(gè)小矩形,第3個(gè)小矩形的面積等于其余m-1各小矩形面積之和的$\frac{1}{4}$,且樣本容量為100,則第3組的頻數(shù)是( 。
A.10B.20C.25D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,且m?α,n?β( 。
A.若m,n是異面直線,則α與β相交B.若m∥β,n∥α則α∥β
C.若m⊥n,則α⊥βD.若m⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知變量x,y滿足約束條件$\left\{{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x-a≥0}\end{array}}\right.$,若$|{\frac{y}{x-2}}|≤\frac{1}{2}$,則實(shí)數(shù)a的取值范圍是( 。
A.(0,1]B.[0,1)C.[0,1]D.(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案