【題目】如圖,在圓內(nèi)接四邊形中, , , .

(1)求的大小;

(2)求面積的最大值.

【答案】(1);(2).

【解析】試題分析:

1)在中,由余弦定理得,則,結(jié)合圓的內(nèi)接四邊形的性質(zhì)可得.

2)法1:在中,由余弦定理得結(jié)合均值不等式的結(jié)論有,. .當(dāng)且僅當(dāng), 面積的最大值為.

2由幾何關(guān)系可知,當(dāng)為弧中點(diǎn)時(shí), 上的高最大,此時(shí)是等腰三角形,此時(shí)上的高,據(jù)此可得面積的最大值為.

試題解析:

1)在中,由余弦定理得

,

解得,

注意到,

可得.

21中,由余弦定理得

,

,

,即.

.

當(dāng)且僅當(dāng),BCD為等腰三角形時(shí)等號(hào)成立,

面積的最大值為.

2:如圖,當(dāng)為弧中點(diǎn)時(shí), 上的高最大,此時(shí)是等腰三角形,易得,作上的高,

中,由, ,得,

可得 ,

綜上知,即面積的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 平面平面, 是等邊三角形, 的中點(diǎn).

(1)證明:

(2)若直線與平面所成角的余弦值為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中,側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為1, 的中點(diǎn).

求證: ∥平面;

)求與平面 所成角的正弦值;

(Ⅲ)試問(wèn)線段上是否存在點(diǎn),使?若存在,求 的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn) M是拋物線Cy2=2pxp0)上一點(diǎn),F是拋物線焦點(diǎn), =60°,|FM|=4

1)求拋物線C方程;

2D﹣1,0),過(guò)F的直線l交拋物線CA、B兩點(diǎn),以F為圓心的圓F與直線AD相切,試判斷并證明圓F與直線BD的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司發(fā)放員工的薪水有三種方式:①第一個(gè)月工資3000元,以后每月以1%的增長(zhǎng)率增長(zhǎng);②第一個(gè)月工資2400元,以后每月以2%的增長(zhǎng)率增長(zhǎng);③第一個(gè)月工資為3200元,每月漲工資30元.

1)設(shè)第x個(gè)月的工資分別為元,試分別建立關(guān)于x的函數(shù);

2)借助計(jì)算器計(jì)算這三種情況下各個(gè)月的工資;

3)請(qǐng)分析這三種領(lǐng)薪方法的區(qū)別,作為員工選擇何種方法更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù)(其中

1)求實(shí)數(shù)m的值;

2)已知關(guān)于x的方程在區(qū)間上有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍;

3)當(dāng)時(shí),的值域是,求實(shí)數(shù)na的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解高二年級(jí)學(xué)生某次數(shù)學(xué)考試成績(jī)的分布情況,從該年級(jí)的1120名學(xué)生中隨機(jī)抽取了100名學(xué)生的數(shù)學(xué)成績(jī),發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績(jī)按照,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說(shuō)法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計(jì)為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ) 求曲線在點(diǎn)處的切線方程;

(Ⅱ) 討論函數(shù)的單調(diào)性;

(Ⅲ) 設(shè),當(dāng)時(shí),若對(duì)任意的,存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,∠PAC=BAC=60°,AC=4AP=3,AB=2

1)求三棱錐P-ABC的體積;

2)求點(diǎn)C到平面PAB距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案