【題目】某高中數(shù)學(xué)建模興趣小組的同學(xué)為了研究所在地區(qū)男高中生的身高與體重的關(guān)系,從若干個(gè)高中男學(xué)生中抽取了1000個(gè)樣本,得到如下數(shù)據(jù).
數(shù)據(jù)一:身高在(單位:)的體重頻數(shù)統(tǒng)計(jì)
體重 () | ||||||||
人數(shù) | 20 | 60 | 100 | 100 | 80 | 20 | 10 | 10 |
數(shù)據(jù)二:身高所在的區(qū)間含樣本的個(gè)數(shù)及部分?jǐn)?shù)據(jù)
身高 | |||||
平均體重 | 45 | 53.6 | 60 | 75 |
(1)依據(jù)數(shù)據(jù)一將上面男高中生身高在(單位:)體重的頻率分布直方圖補(bǔ)充完整,并利用頻率分布直方圖估計(jì)身高在(單位:)的中學(xué)生的平均體重;(保留小數(shù)點(diǎn)后一位)
(2)依據(jù)數(shù)據(jù)一、二,計(jì)算身高(取值為區(qū)間中點(diǎn))和體重的相關(guān)系數(shù)約為0.99,能否用線性回歸直線來刻畫中學(xué)生身高與體重的相關(guān)關(guān)系,請(qǐng)說明理由;若能,求出該回歸直線方程;
(3)說明殘差平方和或相關(guān)指數(shù)與線性回歸模型擬合效果之間關(guān)系.(只需寫出結(jié)論,不需要計(jì)算)
參考公式:,.
參考數(shù)據(jù):(1);(2);(3),,;(4).
【答案】(1)答案見解析,;(2)能;因?yàn)?/span>,線性相關(guān)很強(qiáng),故可以用線性回歸直線來刻畫中學(xué)生身高與體重的相關(guān);;(3)殘差平方和越小或相關(guān)指數(shù)越接近于1,線性回歸模型擬合效果越好.
【解析】
(1)計(jì)算總?cè)藬?shù)得到頻率,補(bǔ)充頻率直方圖并計(jì)算平均值得到答案.
(2)根據(jù)得到線性相關(guān)很強(qiáng),再利用回歸方程公式計(jì)算得到答案.
(3)直接根據(jù)殘差平方和或相關(guān)指數(shù)的定義得到答案.
(1)身高在的總?cè)藬?shù)為:,
體重在的頻率為:,體重在的頻率為:,
平均體重為:
.
(2)因?yàn)?/span>,線性相關(guān)很強(qiáng),故可以用線性回歸直線來刻畫中學(xué)生身高與體重的相關(guān),
,,
,
,
所以回歸直線方程為:.
(3)殘差平方和越小或相關(guān)指數(shù)越接近于1,線性回歸模型擬合效果越好.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元前5世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面1000米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)?/span>10倍.當(dāng)比賽開始后,若阿基里斯跑了1000米,此時(shí)烏龜便領(lǐng)先他100米,當(dāng)阿基里斯跑完下一個(gè)100米時(shí),烏龜領(lǐng)先他10米,當(dāng)阿基里斯跑完下一個(gè)10米時(shí),烏龜先他1米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為0.001米時(shí),烏龜爬行的總距離為( )
A.米B.米C.米D.米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】遼寧省六校協(xié)作體(葫蘆島第一高中、東港二中、鳳城一中、北鎮(zhèn)高中、瓦房店高中、丹東四中)中的某校文科實(shí)驗(yàn)班的名學(xué)生期中考試的語文、數(shù)學(xué)成績都不低于分,其中語文成績的頻率分布直方圖如圖所示,成績分組區(qū)間是:、、、、.
(1)根據(jù)頻率分布直方圖,估計(jì)這名學(xué)生語文成績的中位數(shù)和平均數(shù);(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表;中位數(shù)精確到)
(2)若這名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示:
分組區(qū)間 | ||||
從數(shù)學(xué)成績在的學(xué)生中隨機(jī)選取人,求選出的人中恰好有人數(shù)學(xué)成績在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險(xiǎn),現(xiàn)從名參保人員中隨機(jī)抽取名作為樣本進(jìn)行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應(yīng)交納的保費(fèi)如下表所示. 據(jù)統(tǒng)計(jì),該公司每年為這一萬名參保人員支出的各種費(fèi)用為一百萬元.
年齡 (單位:歲) | |||||
保費(fèi) (單位:元) |
(1)用樣本的頻率分布估計(jì)總體分布,為使公司不虧本,求精確到整數(shù)時(shí)的最小值;
(2)經(jīng)調(diào)查,年齡在之間老人每人中有人患該項(xiàng)疾病(以此頻率作為概率).該病的治療費(fèi)為元,如果參保,保險(xiǎn)公司補(bǔ)貼治療費(fèi)元.某老人年齡歲,若購買該項(xiàng)保險(xiǎn)(取中的).針對(duì)此疾病所支付的費(fèi)用為元;若沒有購買該項(xiàng)保險(xiǎn),針對(duì)此疾病所支付的費(fèi)用為元.試比較和的期望值大小,并判斷該老人購買此項(xiàng)保險(xiǎn)是否劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,點(diǎn)為上一點(diǎn)且===.
(1)求證:平面平面;
(2)若直線與平面所成的角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,左右焦點(diǎn)分別是和,以為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交,且交點(diǎn)在橢圓C上.
(1)求橢圓C的方程.
(2)設(shè)橢圓,P為橢圓C上任意一點(diǎn),過點(diǎn)P的直線交橢圓E于A、B兩點(diǎn),射線OP交橢圓E于點(diǎn)Q.
①判斷是否為定值?若是定值求出該定值,若不是定值說明理由.
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出兩塊相同的正三角形鐵皮(如圖1,圖2),
(1)要求用其中一塊剪拼成一個(gè)三棱錐模型,另一塊剪拼成一個(gè)正三棱柱模型,使它們的全面積都與原三角形的面積相等,
①請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,分別用虛線標(biāo)示在圖1、圖2中,并作簡要說明;
②試比較你剪拼的正三棱錐與正三棱柱的體積的大小
(2)設(shè)正三角形鐵皮的邊長為,將正三角形鐵皮的三個(gè)角切去三個(gè)全等的四邊形,再把它的邊沿虛線折起(如圖3),做成一個(gè)無蓋的正三角形底鐵皮箱,當(dāng)箱底邊長為多少時(shí),箱子容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求的單調(diào)性和極值;
(Ⅱ)若函數(shù)至少有1個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“地?cái)偨?jīng)濟(jì)”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國人民發(fā)出的口號(hào),某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù)(,2,3,4,5,6),如表所示:
試銷單價(jià)x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量y(件) | q | 84 | 83 | 80 | 75 | 68 |
已知,,
(1)試求q,若變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價(jià)x(元)的線性回歸方程;
(2)用表示用(1)中所求的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取3個(gè),求“好數(shù)據(jù)”個(gè)數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:線性回歸方程中,的最小二乘估計(jì)分別為,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com