5.某產(chǎn)品的廣告費(fèi)用x萬元與銷售額y萬元的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)用x2345
銷售額y26394954
根據(jù)上表可得回歸方程$\widehaty=9.4x+a$,據(jù)此模型預(yù)測,廣告費(fèi)用為6萬元時的銷售額為(  )萬元.
A.65.5B.66.6C.67.7D.72

分析 首先求出所給數(shù)據(jù)的平均數(shù),得到樣本中心點(diǎn),根據(jù)線性回歸直線過樣本中心點(diǎn),求出方程中的一個系數(shù),得到線性回歸方程,把自變量為6代入,預(yù)報出結(jié)果.

解答 解:∵$\overline{x}$=$\frac{1}{4}$(2+3+4+5)=3.5,$\overline{y}$=$\frac{1}{4}$(26+39+49+54)=42,
∵數(shù)據(jù)的樣本中心點(diǎn)在線性回歸直線上,回歸方程$\widehaty=9.4x+a$,
∴42=9.4×3.5+a,
∴a=9.1,
∴線性回歸方程是y=9.4x+9.1,
∴廣告費(fèi)用為6萬元時銷售額為9.4×6+9.1=65.5萬元,
故選A.

點(diǎn)評 本題考查求回歸方程,考查利用回歸方程進(jìn)行預(yù)測,解題的關(guān)鍵是根據(jù)回歸方程必過樣本中心點(diǎn),求出回歸系數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x-2y≤2\\ 3x+y≤4\\ x-y≥-4\end{array}\right.$,則目標(biāo)函數(shù)z=y-2x的最大值是14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知一只螞蟻在邊長分別為5,12,13的三角形的邊上隨機(jī)爬行,則其恰在離三個頂點(diǎn)的距離都大于1的地方的概率為( 。
A.$\frac{π}{60}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.不等式組$\left\{{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}}\right.$表示的平面區(qū)域的面積是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在明朝程大位所著《算法統(tǒng)宗》中,有這樣的一首歌謠,叫做浮屠增級歌.“遠(yuǎn)看巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”這首古詩描述的這個寶塔其古稱浮屠,它一共有七層,每層懸掛的紅燈數(shù)是上一層的2倍,全塔總共有381盞燈,問塔頂有幾盞燈?據(jù)此,你算出頂層懸掛的紅燈的盞數(shù)為(  )
A.5B.4C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.對于四面體A-BCD,有以下命題:①若AB=AC=AD,則AB,AC,AD與底面所成的角相等;②若AB⊥CD,AC⊥BD,則點(diǎn)A在底面BCD內(nèi)的射影是△BCD的內(nèi)心;③四面體A-BCD的四個面中最多有四個直角三角形;④若四面體A-BCD的6條棱長都為1,則它的內(nèi)切球的表面積為$\frac{π}{6}$.其中正確的命題是( 。
A.①③B.③④C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線經(jīng)過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),點(diǎn)M為這兩條曲線的一個交點(diǎn),且|MF|=p,則雙曲線的離心率為(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\frac{\sqrt{2}+1}{2}$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在多面體ABCDEF中,底面ABCD是邊長為1的正方形,四邊形BDEF是矩形,且BF=2,CF=$\sqrt{5}$,G和H分別是CE和CF的中點(diǎn).
(I)求證:平面ABCD⊥平面BDEF;(II)求二面角B-GH-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.化簡cos96°cos24°-sin96°sin24°=-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案