已知α為銳角,且tanα=
2
-1

(1)設(shè)
m
=(x,1),
n
=(2tan2α,sin(2α+
π
4
)),若
m
n
,求x的值;
(2)在△ABC中,若∠A=2α,∠C=
π
3
,BC=2,求△ABC的面積.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題
分析:(1)利用二倍角的正切公式求得tan2α 的值,可得2α=
π
4
,再由
m
n
=0求得x的值.
(2)由(1)得∠A=
π
4
,而∠C=
π
3
,根據(jù)正弦定理求得AB的值,可得sinB的值,從而求得△ABC的面積.
解答: 解:(1)∵tanα=
2
-1
,tan2α=
2tanα
1-tan2α
=
2(
2
-1)
1- (
2
-1)
2
=1.…(2分)
又∵α為銳角,∴2α=
π
4
,α=
π
8
,
n
=(2,1).…(4分) 
m
n
,∴
m
n
=0,即 2x+1=0,x=-
1
2
. …(6分)
(2)由(1)得∠A=
π
4
,而∠C=
π
3
,根據(jù)正弦定理得
AB
sin
π
3
=
2
sin
π
4
,…(8分)
求得AB=
6
,…(10分)
sinB=sin(A+C)=
6
+
2
4
,…(12分)
從而求得△ABC的面積S=
1
2
AB•BC•sinB=
3+
3
2
.…(14分)
點(diǎn)評(píng):本題主要考查三角函數(shù)的恒等變換,向量的數(shù)量積公式的應(yīng)用,兩個(gè)向量垂直的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義行列式運(yùn)算:
.
a1a2
a3a4
.
=a1a4-a2a3,將函數(shù)f(x)=
.
3
cosx
1sinx
.
的圖象向左平移m個(gè)單位(m>0),若所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則m的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓M(焦點(diǎn)在x軸上)的離心率為
2
2
3
,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為6+4
2

(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)直線l與橢圓M交于A、B兩點(diǎn),且以AB為直徑的圓過(guò)橢圓的右頂點(diǎn)C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列算式:
1=1,
3+5=8,
7+9+11=27,
13+15+17+19=64,
21+23+25+27+29=125,

猜測(cè)第n行的式子為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
1-x
2x+1
≥0
的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)兩個(gè)方程x2-4x+lga=0,x2-4x+lgb=0(a≠b)的四個(gè)根組成一個(gè)公差為2的等差數(shù)列,則ab的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且an=SnSn-1(n≥2,Sn≠0),a1=
2
9

(Ⅰ)求證:數(shù)列{
1
Sn
}
為等差數(shù)列;
(Ⅱ)求滿足an<0的自然數(shù)n的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=lg
1-x
1+x
的圖象關(guān)于點(diǎn)
 
對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

多面體EF-ABCD中,ABCD為正方形,BE⊥平面ABCD,CF⊥平面ABCD,AB=CF=2BE.
(Ⅰ)求證:DE⊥AC;
(Ⅱ)求平面EFD與平面ABCD所成的銳二面角.

查看答案和解析>>

同步練習(xí)冊(cè)答案