已知冪函數(shù)f(x)=(m2-m-1)xm2-2m-3,且當(dāng)x>0時,y是減函數(shù),則m的值為
 
考點:冪函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)冪函數(shù)的系數(shù)一定為1可先確定參數(shù)m的值,再根據(jù)單調(diào)性進行排除,可得答案.
解答: 解:∵函數(shù)f(x)=(m2-m-1)xm2-2m-3為冪函數(shù),
∴m2-m-1=1,
解得:m=-1或m=2.
當(dāng)m=-1時,函數(shù)為y=x0在x>0時不是減函數(shù),不滿足題意,
當(dāng)m=2時,函數(shù)為y=x-3在x>0時是減函數(shù),滿足題意,
故m=2,
故答案為:2
點評:本題主要考查冪函數(shù)的表達形式以及冪函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

cos(15°-θ)+cos(θ+45°)-
3
sin(75°-θ)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β為兩個不重合的平面,m,n是兩條不重合的直線,給出下列四個命題:
①若m⊥n,m⊥α,則n∥α;
②若n?α,m?β,α與β相交且不垂直,則n與m不垂直;
③若α⊥β,α∩β=m,m⊥n,則n⊥β;
④若m∥n,n⊥α,α∥β,則m⊥β.
其中所有真命題的序號
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的圖象如圖所示,下列數(shù)值排序正確的是(  )
A、0<f′(3)<f′(4)<f(4)-f(3)
B、0<f′(3)<f(4)-f(3)<f′(4)
C、0<f′(4)<f′(3)<f(4)-f(3)
D、0<f(4)-f(3)<f′(3)<f′(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

內(nèi)接于半徑為R的球且體積最大的圓柱的高為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosβ=-
1
3
,sin(α+β)=
7
9
,且α∈(0,
π
2
),β∈(
π
2
,π),求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

漸近線為y=±
2
3
x且焦距為2
13
的雙曲線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx+2
3
sin2x-
3
,將y=f(x)的圖象向左平移
π
6
個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)在[a,b]上至少含有1012個零點,則b-a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x),x∈[a,b],其導(dǎo)函數(shù)的圖象如圖所示,則函數(shù)y=f(x)的減區(qū)間是( 。
A、(x1,x3
B、(x2,x4
C、(x4,x6
D、(x5,x6

查看答案和解析>>

同步練習(xí)冊答案