【題目】f(x)是定義在(0,+∞)上的減函數(shù),滿足f(x)+f(y)=f(xy).
(1)求證: ;
(2)若f(4)=﹣4,解不等式 .
【答案】
(1)證明:∵f(x)+f(y)=f(xy),
將x代換為 ,則有 ,
∴ ;
(2)解:∵f(x)+f(y)=f(xy),
∴﹣12=﹣4+(﹣4)+(﹣4)=f(4)+f(4)+f(4)=f(64),
∵ ,
∴f(x)﹣f( )=f[x(x﹣12)],
∴不等式 等價于f[x(x﹣12)]≥f(64),
∵f(x)是定義在(0,+∞)上的減函數(shù),
∴ ,即 ,
∴12<x≤16,
∴不等式 的解集為{x|12<x≤16}.
【解析】
【考點精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識點,需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC= .
(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 若Sn=2an﹣3n.
(Ⅰ)求證:數(shù)列{an+3}是等比數(shù)列,并求出數(shù)列{an}的通項an;
(Ⅱ)求數(shù)列{nan}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,異面直線AD1與BD所成的角為;若AB的中點為M,DD1的中點為N,則異面直線B1M與CN所成的角為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題12分)已知函數(shù) .
(1)若=0,判斷函數(shù)的單調(diào)性;
(2)若時,<0恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,斜三棱柱ABC﹣A1B1C1的所有棱長均為a,M是BC的中點,側(cè)面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求證:BC⊥C1M;
(Ⅱ)求二面角A1﹣AB﹣C的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 =(cosα,sinα), =(cosβ,sinβ),(0<β<α<π).
(1)若 ,求證: ;
(2)設(shè) ,若 ,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定橢圓C: =1(a>b>0).設(shè)t>0,過點T(0,t)斜率為k的 直線l與橢圓C交于M,N兩點,O為坐標原點.
(Ⅰ)用a,b,k,t表示△OMN的面積S,并說明k,t應(yīng)滿足的條件;
(Ⅱ)當k變化時,求S的最大值g(t).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com