分析 (1)由題意可得sinθ<0,cosθ>0,利用同角三角函數(shù)的基本關(guān)系求得2sinθcosθ的值,可得sinθ-cosθ=-$\sqrt{{(sinθ-cosθ)}^{2}}$的值.
(2)根據(jù)sinθ+cosθ和sinθ-cosθ的值,求得sinθ和cosθ的值,可得tanθ的值.
解答 解:∵θ是第四象限角,∴sinθ<0,cosθ>0,
∵$sinθ+cosθ=\frac{1}{5}$ ①,∴1+2sinθcosθ=$\frac{1}{25}$,∴2sinθcosθ=-$\frac{24}{25}$,
(1)∴sinθ-cosθ=-$\sqrt{{(sinθ-cosθ)}^{2}}$=-$\sqrt{1-2sinθcosθ}$=-$\sqrt{1+\frac{24}{25}}$=-$\frac{7}{5}$ ②.
(2)由①②求得sinθ=-$\frac{3}{5}$,cosθ=$\frac{4}{5}$,∴tanθ=$\frac{sinθ}{cosθ}$=-$\frac{3}{4}$.
點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({0,\frac{3}{4}})$ | B. | $({-∞,0})∪({\frac{3}{4},+∞})$ | C. | $[{0,\frac{3}{4}})$ | D. | $({\frac{3}{4},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b=10,A=45°,C=60° | B. | a=6,c=5,B=60° | ||
C. | a=7,b=5,A=60° | D. | a=3,b=4,A=45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x=\frac{1}{2}$ | B. | $x=\frac{1}{8}$ | C. | $y=\frac{1}{2}$ | D. | y=-$\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com