【題目】(本題滿分12分)
一個(gè)盒子中裝有4張卡片,每張卡片上寫有1個(gè)數(shù)字,數(shù)字分別是1、2、3、4,現(xiàn)從盒子中隨機(jī)抽取卡片.
(Ⅰ)若一次從中隨機(jī)抽取3張卡片,求3張卡片上數(shù)字之和大于或等于7的概率;
(Ⅱ)若第一次隨機(jī)抽取1張卡片,放回后再隨機(jī)抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字2的概率.
【答案】(1)(2)
【解析】
古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題可以列舉出所有事件,概率問(wèn)題同其他的知識(shí)點(diǎn)結(jié)合在一起,實(shí)際上是以概率問(wèn)題為載體,主要考查的是另一個(gè)知識(shí)點(diǎn)
(1)由題意知本題是一個(gè)古典概型,試驗(yàn)包含的所有事件是任取三張卡片,三張卡片上的數(shù)字全部可能的結(jié)果,可以列舉出,而滿足條件的事件數(shù)字之和大于7的,可以從列舉出的結(jié)果中看出.
(2)列舉出每次抽1張,連續(xù)抽取兩張全部可能的基本結(jié)果,而滿足條件的事件是兩次抽取中至少一次抽到數(shù)字3,從前面列舉出的結(jié)果中找出來(lái).
解:(Ⅰ)設(shè)A表示事件“抽取3張卡片上的數(shù)字之和大于或等于7”,任取三張卡片,三張卡片上的數(shù)字全部可能的結(jié)果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),共4種,……………………………2分
數(shù)字之和大于或等于7的是(1、2、4),(1、3、4),(2、3、4),共3種,……4分
所以P(A)=. ……………6分
(Ⅱ)設(shè)B表示事件“至少一次抽到2”,
第一次抽1張,放回后再抽取1張的全部可能結(jié)果為:(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16個(gè) ……………………………8分
事件B包含的結(jié)果有(1、2)(2、1)(2、2)(2、3)(2、4)(3、2)(4、2),共7個(gè)
………10分
所以所求事件的概率為P(B)=. ……………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直三棱柱ABC﹣A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱錐C﹣ABB1A1的體積等于4.
(1)求AA1的值;
(2)求C1到平面A1B1C的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)f(x)=xlnx.
(1)求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)對(duì)x≥1,f(x)≤m(x2﹣1)成立,求實(shí)數(shù)m的最小值;
(3)證明:1n .(n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列各函數(shù)中,最小值等于2的函數(shù)是( )
A.y=x+
B.y=cosx+ (0<x< )
C.y=
D.y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為棱長(zhǎng)的正方體, 為棱的中點(diǎn).
(1)求三棱錐的體積;
(2)求證: 平面.
【答案】(1);(2)見(jiàn)解析.
【解析】試題分析:(1)高為ED,再根據(jù)錐體體積公式計(jì)算體積(2)連接交于點(diǎn),根據(jù)三角形中位線性質(zhì)得,再根據(jù)線面平行判定定理得結(jié)論
試題解析:(1)體積
(2)連接交于點(diǎn),則為的中位線,即,
又面, 面,得到 平面.
【題型】解答題
【結(jié)束】
18
【題目】已知拋物線: 的焦點(diǎn)為圓的圓心.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若斜率的直線過(guò)拋物線的焦點(diǎn)與拋物線相交于兩點(diǎn),求弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N* .
(1)證明:數(shù)列{ }是等差數(shù)列;
(2)設(shè)bn=3n ,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn), ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足.證明直線過(guò)定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項(xiàng)公式.
(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問(wèn):b6與數(shù)列{an}的第幾項(xiàng)相等?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com