已知O為原點,橢圓
x2
25
+
y2
9
=1上一點P到左焦點F1的距離為4,M是PF1的中點.則|OM|=
 
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)橢圓的定義,得|PF1|+|PF2|=2a,可得|PF2|=2a-|PF1|=6,在△PF1F2中利用中位線定理,即可得到的|OM|值.
解答: 解:∵橢圓
x2
25
+
y2
9
=1中,a=5,
∴|PF1|+|PF2|=2a=10,
結(jié)合|PF1|=4,得|PF2|=2a-|PF1|=10-4=6,
∵OM是△PF1F2的中位線,
∴|OM|=
1
2
|PF2|=
1
2
×6=3.
故答案為:3.
點評:本題給出橢圓的焦點三角形的一邊長,求另一邊中點到原點的距離,著重考查了橢圓的定義和標準方程和簡單幾何性質(zhì)等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在空間中的Rt△ABC與直角梯形EFGD中,平面ABC∥平面DEFG,AD⊥平面DEFG,AC∥DG.且AB=AD=DE=DG=2,AC=EF=1.求二面角D-CG-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的框圖,若輸入N=6,則輸出的數(shù)S等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知E、F、G、H分別是三棱錐A-BCD 棱AB、BC、CD、DA的中點,
(1)四邊形EFGH是
 
形;
(2)AC與BD所成角為60°,且AC=BD=1,則EG=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線上分別取點A、B,使得|
OA
|•|
OB
|=c2,則線段AB中點P的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1中,求
(1)AA1與C1D1所成的角;
(2)A1B與B1D1所成的角;
(3)BD與A1C1所成的角;
(4)AC1與BB1所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的中心在原點,焦點在x軸上,且它的離心率為
2
3
3
,實半軸長為
3

(Ⅰ)求雙曲線C的方程;
(Ⅱ)過(0,
2
)
的直線與雙曲線C有兩個不同的交點A和B,且
OA
OB
=-31
(其中O為原點),試求出這條直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a(2x-1)+(2a2+1)ln(-x),a∈R.
(1)討論f(x)在定義域上的單調(diào)性;
(2)當a≥0時,判斷f(x)在[-1,-
1
2
]上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點D是AB的中點,點M是△ABC三條中線的交點,O是空間任意一點.求證:
(1)
OD
=
1
2
OA
+
OB
);
(2)
OM
=
1
3
OA
+
OB
+
OC
).

查看答案和解析>>

同步練習(xí)冊答案