如圖,在空間中的Rt△ABC與直角梯形EFGD中,平面ABC∥平面DEFG,AD⊥平面DEFG,AC∥DG.且AB=AD=DE=DG=2,AC=EF=1.求二面角D-CG-F的余弦值.
考點(diǎn):二面角的平面角及求法
專題:空間角
分析:在平面ADGC中,過(guò)M作MN⊥GC,垂足為N,連接NF,根據(jù)二面角的平面角的定義可知∠MNF是所求二面角的平面角,在直角三角形MNF中,先求出此角的正切值,然后再求出余弦值.
解答: 解:∵四邊形EFGD是直角梯形,AD⊥面DEFG
∴DE⊥DG,DE⊥AD,即DE⊥面ADGC,
∵M(jìn)F∥DE,且MF=DE,∴MF⊥面ADGC
在平面ADGC中,過(guò)M作MN⊥GC,垂足為N,連接NF,則
顯然∠MNF是所求二面角的平面角.
∵在四邊形ADGC中,AD⊥AC,AD⊥DG,AC=DM=MG=1
∴CD=CG=
5
,∴cos∠DGC=
GC2+GD2-CD2
2×GC×GD
=
5+4-5
5
×2
=
5
5

∴sin∠DGC=
2
5
5
,∴MN=MG•sin∠DGC=
2
5
5

在直角三角形MNF中,MF=2,MN=
2
5
5

∴tan∠MNF=
MF
MN
=
2
2
5
5
=
5
,cos∠MNF=
6
6

故面ADGC與面BCGF所組成的二面角余弦值為
6
6
點(diǎn)評(píng):本題主要考查相交平面所成二面角以及空間幾何體的幾何量的計(jì)算等知識(shí),考查空間想象能力和推理論證能力、利用綜合法解決立體幾何問(wèn)題的能力.也可以利用向量法求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若3a=5b=15,則
1
a
+
1
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ∈(π,
3
2
π)
,且cosθ=-
5
5
,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合I={1,2,3},A⊆I,若把滿足M∪A=I的集合M叫做集合A的配集,則A={1,2}的子集有(  )個(gè).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn).
(1)求四棱錐O-ABCD的體積;
(2)求異面直線OC和MD所成角的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以正四棱臺(tái)(底面為正方形,各個(gè)側(cè)面均為全等的等腰梯形)為模型,驗(yàn)證棱臺(tái)的平行于底面的截面的性質(zhì):設(shè)棱臺(tái)上底面面積為S1,下底面面積為S2,平行于底面的截面將棱臺(tái)的高分成上、下比為m:n的兩段,則截面面積S滿足下列關(guān)系:
S
=
m
S2
+n
S1
m+n
,當(dāng)m=n時(shí),則
S
=
S1+
S2
2
(中截面面積公式).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x-1)-k(x-1)+1 
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若 f(x)≤0恒成立,式確定實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,AD=1,AA1=3,則直線A1C與平面ABC1D1所成角的正弦值為( 。
A、
3
35
35
B、
3
14
7
C、
14
7
D、
3
2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為原點(diǎn),橢圓
x2
25
+
y2
9
=1上一點(diǎn)P到左焦點(diǎn)F1的距離為4,M是PF1的中點(diǎn).則|OM|=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案